

Please write clearly in block capitals.	
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

INTERNATIONAL GCSE CHEMISTRY

Paper 1

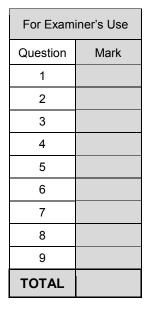
Monday 4 November 2019 07:00 GMT Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

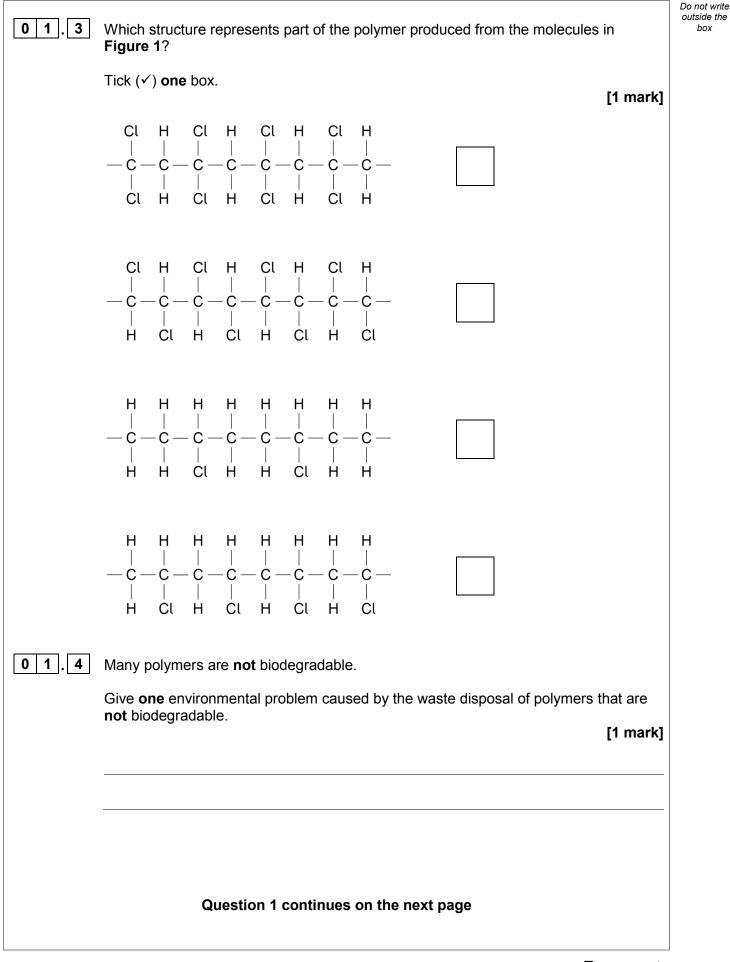
- a pencil and a ruler
- a scientific calculator
- the Periodic Table (enclosed).

Instructions

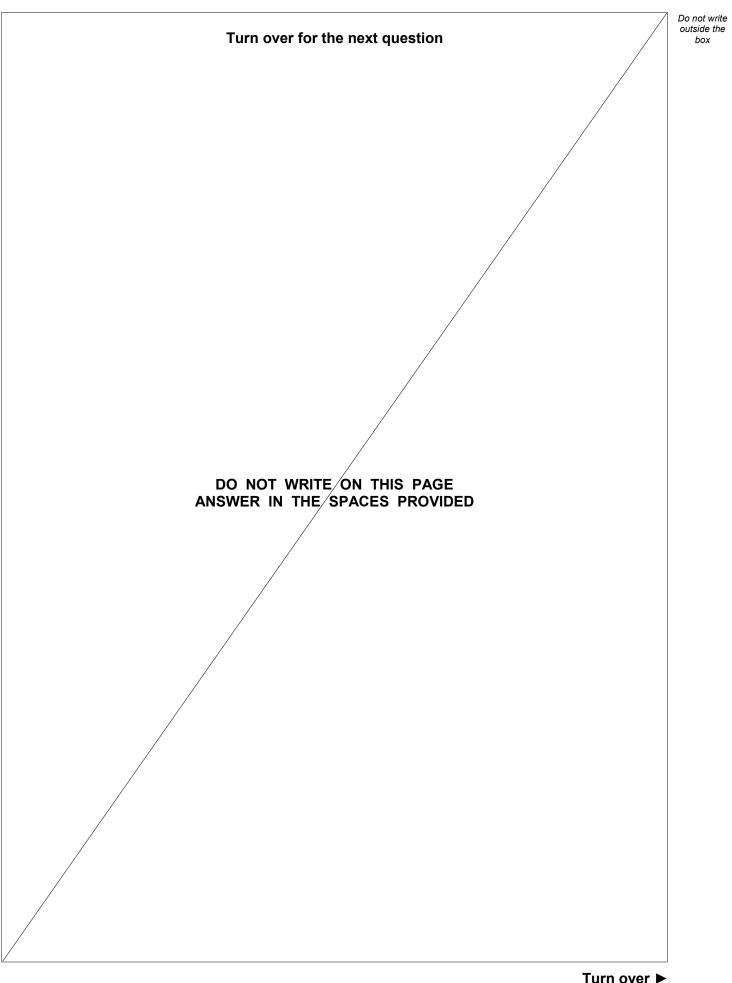

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

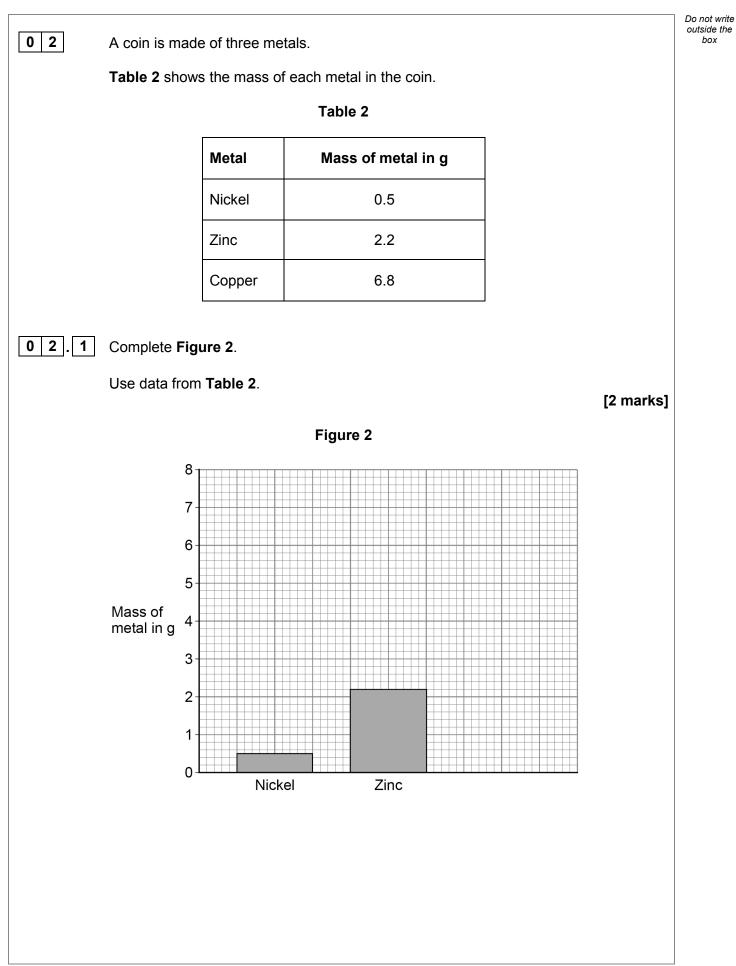
Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 90.
- You are expected to use a scientific calculator where appropriate.
- A Periodic Table is provided as a loose insert.



	Answer all questions in the spaces provided.					
0 1	his question is about polymers.					
	Figure 1 shows molecules that join together to produce a polymer.					
	Figure 1					
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
01.1	How many different elements are in the molecules in Figure 1 ? [1 mark]					
01.2	What is the name of molecules that join together to produce a polymer?					
	Tick (✓) one box. [1 mark]					
	Alkanes					
	Fullerenes					
	Monomers					
I						





		Та	able 1		
	Polymer	Melting point in °C	Flexibility	Solubility in water	
	Α	60	flexible	insoluble	
	В	160	flexible	insoluble	
	С	200	rigid	soluble	
	D	does not melt	rigid	insoluble	
		B and C are describe used to describe p		ening polymers.	D [1 mark]
. 7 G ar	ive one differe nd C .	ence in the structur	e of polymer D c	ompared with polyn	ners A, B [1 mark]

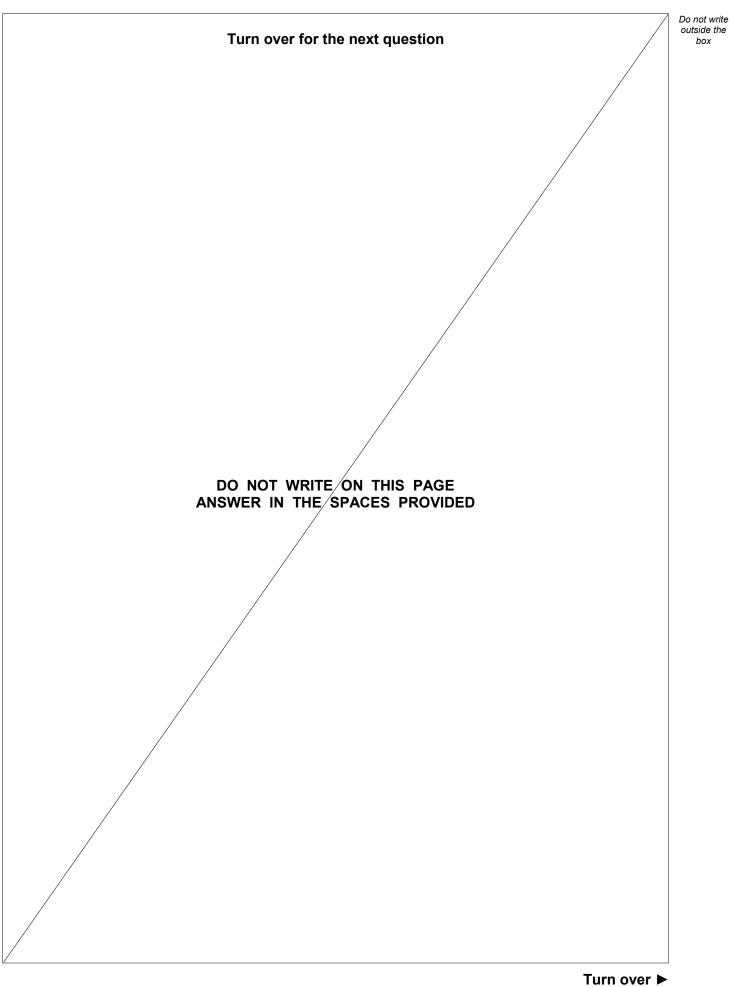
box

02.2	Calculate the percentage of copper	in the coin.	
	Give your answer to 2 significant fig	ures.	[4 marks]
	Percentage of co	pper =	%
02.3	Copper is used to make water pipes).	
	Which two properties make copper	suitable for making water pip	es?
	Tick (✓) two boxes.		[2 marks]
	Can be bent		[2 mark5]
	Forms ionic compounds		
	Good conductor of electricity		
	Has a high density		
	Unreactive		
02.4	Complete the sentence about coppe	er.	
	Choose the answer from the box.		[1 mark]
	bonded delocalised	fixed	metallic
	Copper can conduct electricity beca	use the structure of copper h	as
	electron	IS.	

Do not write outside the box

٦

			Do not w
	Copper can be extracted using a displacement reaction.		outside box
	Scrap iron is used to displace copper from copper sulfate solution.		
02.5	Complete the word equation for the reaction.	14	
		[1 mark]	
	iron + copper sulfate → +		
02.6	Why does iron displace copper from copper sulfate solution?		
		[1 mark]	
0 2 . 7	Suggest why the iron used is scrap iron.	[1 mark]	



Turn over ►

$Cu^{2+} + 2e^{-} \longrightarrow Cu$	
What happens to copper ions in this reaction?	
Complete the sentence.	
Choose the answers from the box. [2 ma	rks]
decomposed gained lost oxidised reduced shared	
Copper ions are because electrons are	
	16

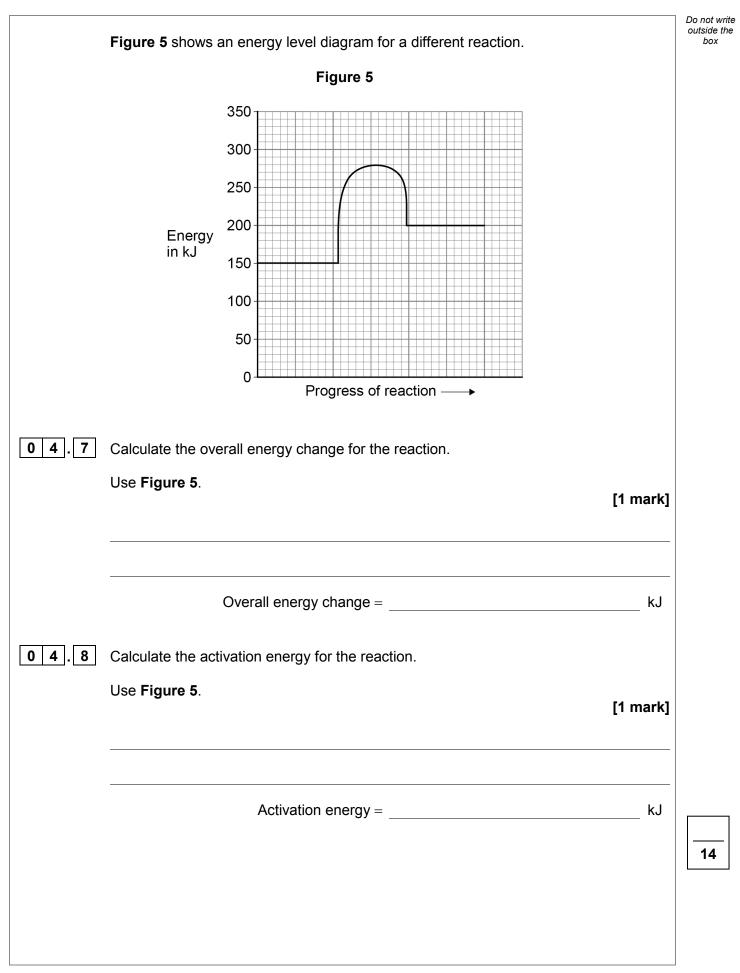
IB/M/Nov19/9202/1

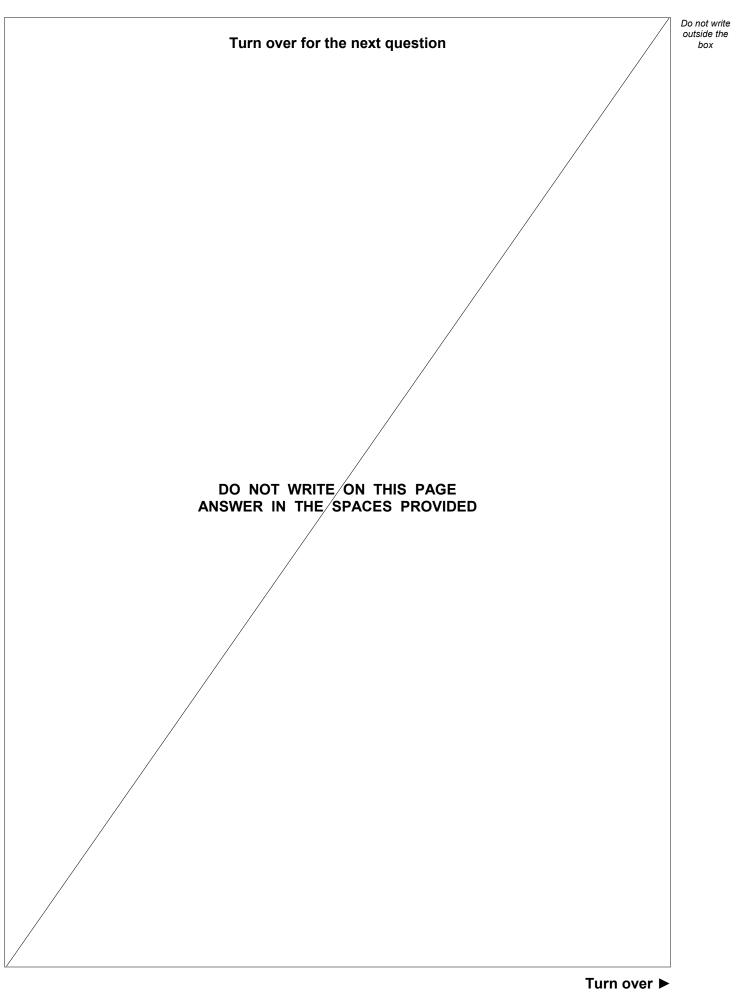
		Do not write
0 3	This question is about conservation of mass.	outside the box
03.1	Complete the sentence. [1 mark]	
	Mass is conserved in a chemical reaction because no	
	are lost or made.	
0 3.2	2.24 g of iron is heated with excess sulfur.	
	$Fe(s) + S(s) \longrightarrow FeS(s)$	
	Calculate the maximum mass of iron sulfide that can be produced.	
	Relative atomic masses (A_r): S = 32 Fe = 56 [3 marks]	
	Maximum mass of iron sulfide = g	

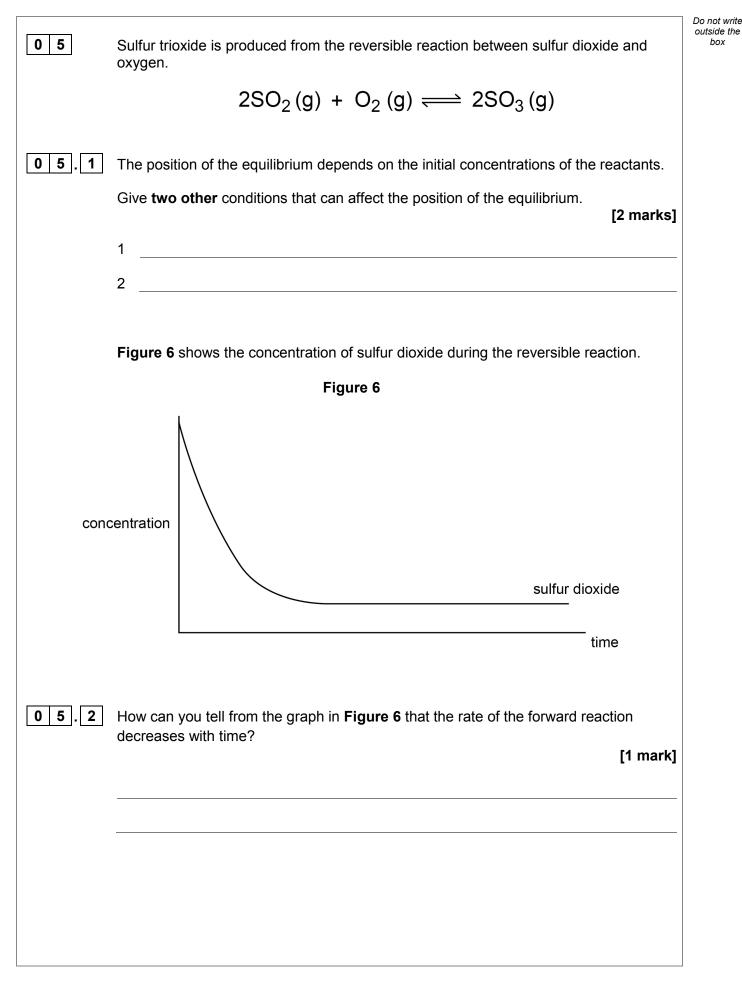
 A teacher wanted to demonstrate the conservation of mass using the reaction between iron and sulfur. F(s) + S(s) → FeS(s) This is the method used. A dd a mixture of iron powder and sulfur powder to a test tube. Beasure the mass of the test tube and contents. Heast the test tube strongly for 5 minutes in a fume cupboard. Heasure the mass of the test tube and contents again. Table 3 shows the teacher's results. Table 3 shows the teacher's results. Table and contents before reaction 31.10 Test tube and contents before reaction 30.85 3 The students concluded that mass was not conserved. Explain how the results in Table 3 can be used to justify this conclusion. [2 marks] 4 The students also observed that the mixture bubbled during the reaction. This observation was not expected. Suggest why the bubbling meant that the teacher's demonstration could not prove that mass was conserved. [2 marks]		• • •		_	
This is the method used. 1 Add a mixture of iron powder and sulfur powder to a test tube. 2 Measure the mass of the test tube and contents. 3 Heat the test tube strongly for 5 minutes in a fume cupboard. 4 Allow the test tube to cool. 5 Measure the mass of the test tube and contents again. Table 3 shows the teacher's results. Table 3 Test tube and contents before reaction 31.10 Test tube and contents after reaction 30.85 3 The students concluded that mass was not conserved. Explain how the results in Table 3 can be used to justify this conclusion. [2] marks]				of mass usi	ng the reaction
 Add a mixture of iron powder and sulfur powder to a test tube. Measure the mass of the test tube and contents. Heat the test tube strongly for 5 minutes in a fume cupboard. Allow the test tube to cool. Measure the mass of the test tube and contents again. Table 3 shows the teacher's results. Table 3 Test tube and contents before reaction 31.10 Test tube and contents after reaction 30.85 The students concluded that mass was not conserved. Explain how the results in Table 3 can be used to justify this conclusion. [2 marks] 4 The students also observed that the mixture bubbled during the reaction. This observation was not expected. Suggest why the bubbling meant that the teacher's demonstration could not prove that mass was conserved.			Fe(s) + S(s)	→ FeS(s)	
 2 Measure the mass of the test tube and contents. 3 Heat the test tube to cool. 5 Measure the mass of the test tube and contents again. Table 3 shows the teacher's results. Table 3 Test tube and contents before reaction 31.10 Test tube and contents after reaction 30.85 3 The students concluded that mass was not conserved. Explain how the results in Table 3 can be used to justify this conclusion. [2 marks] 4 The students also observed that the mixture bubbled during the reaction. This observation was not expected. Suggest why the bubbling meant that the teacher's demonstration could not prove that mass was conserved. 		This is the	e method used.		
Table 3 Mass in g Test tube and contents before reaction 31.10 Test tube and contents after reaction 30.85 3 The students concluded that mass was not conserved. Explain how the results in Table 3 can be used to justify this conclusion. [2 marks]		 Measure Heat the second s	re the mass of the test tube and contents le test tube strongly for 5 minutes in a fun ne test tube to cool.	ne cupboard.	
Mass in g Test tube and contents before reaction 31.10 Test tube and contents after reaction 30.85 The students concluded that mass was not conserved. Explain how the results in Table 3 can be used to justify this conclusion. [2 marks]		Table 3 s	hows the teacher's results.		
Test tube and contents before reaction 31.10 Test tube and contents after reaction 30.85 The students concluded that mass was not conserved. Explain how the results in Table 3 can be used to justify this conclusion. [2 marks]			Table 3		
Test tube and contents after reaction 30.85 The students concluded that mass was not conserved. Explain how the results in Table 3 can be used to justify this conclusion. [2 marks] The students also observed that the mixture bubbled during the reaction. This observation was not expected. Suggest why the bubbling meant that the teacher's demonstration could not prove that mass was conserved.				Mass in g	
 3 The students concluded that mass was not conserved. Explain how the results in Table 3 can be used to justify this conclusion. [2 marks] 4 The students also observed that the mixture bubbled during the reaction. This observation was not expected. Suggest why the bubbling meant that the teacher's demonstration could not prove that mass was conserved. 			Test tube and contents before reaction	31.10	
 Explain how the results in Table 3 can be used to justify this conclusion. [2 marks] The students also observed that the mixture bubbled during the reaction. This observation was not expected. Suggest why the bubbling meant that the teacher's demonstration could not prove that mass was conserved. 					
This observation was not expected. Suggest why the bubbling meant that the teacher's demonstration could not prove that mass was conserved.	3		ents concluded that mass was not conser	rved.	
This observation was not expected. Suggest why the bubbling meant that the teacher's demonstration could not prove that mass was conserved.	3		ents concluded that mass was not conser	rved.	
This observation was not expected. Suggest why the bubbling meant that the teacher's demonstration could not prove that mass was conserved.	3		ents concluded that mass was not conser	rved.	
that mass was conserved.		Explain h	ents concluded that mass was not conser ow the results in Table 3 can be used to	rved. justify this co	[2 marks]
[2 marks]		Explain h	ents concluded that mass was not conserved the results in Table 3 can be used to sents also observed that the mixture bubblervation was not expected.	rved. justify this co	[2 marks]
		Explain h	ents concluded that mass was not conserved the results in Table 3 can be used to serve the results in Table 3 can be used to serve that the mixture bubble revation was not expected.	rved. justify this co	[2 marks] e reaction. ion could not prove
		Explain h	ents concluded that mass was not conserved the results in Table 3 can be used to serve the results in Table 3 can be used to serve that the mixture bubble revation was not expected.	rved. justify this co	[2 marks] e reaction. ion could not prove
		Explain h	ents concluded that mass was not conserved the results in Table 3 can be used to serve the results in Table 3 can be used to serve that the mixture bubble revation was not expected.	rved. justify this co	[2 marks] e reaction. ion could not prove

0 4	A student investigated the energy change for a chemical reaction.
	This is the method used.
	 Measure 50 cm³ of dilute hydrochloric acid into a glass beaker. Record the starting temperature of the acid. Add 4.0 g of sodium carbonate powder to the glass beaker. Record the highest temperature of the mixture.
	Figure 4 shows the apparatus used.
	Figure 4
	Sodium carbonate powder
	Thermometer
	Glass beaker
4.1	50 cm ³ of dilute hydrochloric acid
4.1	hydrochloric acid
	Name one piece of apparatus that is suitable to measure 50 cm ³ of dilute hydrochloric acid.
	Name one piece of apparatus that is suitable to measure 50 cm ³ of dilute hydrochloric acid. [1 mark]
	hydrochloric acid Name one piece of apparatus that is suitable to measure 50 cm³ of dilute hydrochloric acid. [1 mark] The student used a glass beaker in the experiment. Suggest one change the student could make to the glass beaker to improve the
	hydrochloric acid Name one piece of apparatus that is suitable to measure 50 cm³ of dilute hydrochloric acid. [1 mark] The student used a glass beaker in the experiment. Suggest one change the student could make to the glass beaker to improve the accuracy of the results. Give the reason for your answer.
	hydrochloric acid Name one piece of apparatus that is suitable to measure 50 cm ³ of dilute hydrochloric acid. [1 mark] The student used a glass beaker in the experiment. Suggest one change the student could make to the glass beaker to improve the accuracy of the results. Give the reason for your answer. [2 marks]
	hydrochloric acid Name one piece of apparatus that is suitable to measure 50 cm³ of dilute hydrochloric acid. [1 mark] The student used a glass beaker in the experiment. Suggest one change the student could make to the glass beaker to improve the accuracy of the results. Give the reason for your answer. [2 marks] Change

04.3	An important instruction is missing between step 3 and step 4 in the student's method.	Do no outsic bo
	What is the missing instruction?	
	Give one reason why this instruction improves the accuracy of the temperature recorded in step 4 .	
	[2 marks]	
	Missing instruction	
	Reason	
	Question 4 continues on the next page	


Look at the data in Table 4. [1 mark]		Table 4 s	hows the student's results.			Do ol
Starting temperature 20.1 Highest temperature reached 25.9 0 4 .4 What is the resolution of the thermometer that the student used? Look at the data in Table 4. °C 0 4 .5 Calculate the energy released (Q), in kilojoules (kJ), for the reaction between dilute hydrochloric acid and sodium carbonate. Use the results in Table 4. Assume 50 cm³ of solution was produced with a density of 1.0 g/cm³ Use the equation: Q = mc Δ T Where: • Q = energy released in J • m = mass in g • c = specific heat capacity = 4.2 J/g°C • Δ T = temperature change in °C			Table 4			
Highest temperature reached 25.9 $0 4$. 4 What is the resolution of the thermometer that the student used? Look at the data in Table 4. [1 mark] °C °C $0 4$. 5 Calculate the energy released (Q), in kilojoules (kJ), for the reaction between dilute hydrochloric acid and sodium carbonate. Use the results in Table 4. [1 mark] Use the results in Table 4. Assume 50 cm ³ of solution was produced with a density of 1.0 g/cm ³ Use the equation: Q = mc\DeltaT Where: • Q = energy released in J • m = mass in g • c = specific heat capacity = 4.2 J/g°C • ΔT = temperature change in °C				Temperature in °C		
0 4 . 4 What is the resolution of the thermometer that the student used? Look at the data in Table 4 . [1 mark] $^{\circ C}$ 0 4 . 5 Calculate the energy released (Q), in kilojoules (kJ), for the reaction between dilute hydrochloric acid and sodium carbonate. Use the results in Table 4 . Assume 50 cm ³ of solution was produced with a density of 1.0 g/cm ³ Use the equation: Q = mc∆T Where: • Q = energy released in J • m = mass in g • c = specific heat capacity = 4.2 J/g°C • ∆T = temperature change in °C			Starting temperature	20.1		
Look at the data in Table 4. [1 mark] $\bigcirc \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			Highest temperature reached	25.9		
$\begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c } \hline \begi$	04.4	What is th	ne resolution of the thermomete	r that the student used	1?	
 0 4.5 Calculate the energy released (Q), in kilojoules (kJ), for the reaction between dilute hydrochloric acid and sodium carbonate. Use the results in Table 4. Assume 50 cm³ of solution was produced with a density of 1.0 g/cm³ Use the equation: Q = mc∆T Where: Q = energy released in J m = mass in g c = specific heat capacity = 4.2 J/g°C ∆T = temperature change in °C 		Look at th	ne data in Table 4 .		[1 mark]	
hydrochloric acid and sodium carbonate. Use the results in Table 4 . Assume 50 cm ³ of solution was produced with a density of 1.0 g/cm ³ Use the equation: Q = mc Δ T Where: • Q = energy released in J • m = mass in g • c = specific heat capacity = 4.2 J/g°C • Δ T = temperature change in °C				°C		
Assume 50 cm ³ of solution was produced with a density of 1.0 g/cm ³ Use the equation: Q = mc Δ T Where: • Q = energy released in J • m = mass in g • c = specific heat capacity = 4.2 J/g°C • Δ T = temperature change in °C	04.5			joules (kJ), for the rea	action between dilute	
Use the equation: $Q = mc\Delta T$ Where: • $Q =$ energy released in J • $m =$ mass in g • $c =$ specific heat capacity = 4.2 J/g°C • $\Delta T =$ temperature change in °C		Use the re	esults in Table 4 .			
Where: • $Q = energy released in J$ • $m = mass in g$ • $c = specific heat capacity = 4.2 J/g^{\circ}C$ • $\Delta T = temperature change in ^{C}C$		Assume 5	50 cm ³ of solution was produced	d with a density of 1.0	g/cm ³	
 Q = energy released in J m = mass in g c = specific heat capacity = 4.2 J/g°C ΔT = temperature change in °C 		Use the e	quation: Q = mc∆T			
 m = mass in g c = specific heat capacity = 4.2 J/g°C ΔT = temperature change in °C 			ergy released in J			
• ΔT = temperature change in °C		• m = ma	ass in g			
[e]		• $\Delta T = te$	mperature change in °C		[3 marks]	
					[
			Energy released (Q)	=	kJ	
 Energy released (Q) =kJ						
 Energy released (Q) =kJ						
 Energy released (Q) =kJ						


carbonate. The student reacted 4.14 g of potassium carbonate (K_2CO_3) with an excess hydrochloric acid. The student used the results to calculate that the energy released was 1.0 Calculate the enthalpy change (ΔH) for the reaction.	of sodium	Do not write butside the box
Relative formula mass (M_r): $K_2CO_3 = 138$	[3 marks]	
Enthalpy change (<i>∆H</i>) =	kJ/mol	
Question 4 continues on the next page		
	carbonate. The student reacted 4.14 g of potassium carbonate (K ₂ CO ₃) with an excess hydrochloric acid. The student used the results to calculate that the energy released was 1.0 Calculate the enthalpy change (ΔH) for the reaction. Give your answer in kilojoules per mole of potassium carbonate. Relative formula mass (M_r): K ₂ CO ₃ = 138 	The student repeated the experiment using potassium carbonate instead of sodium carbonate. The student reacted 4.14 g of potassium carbonate (K₂CO₃) with an excess of dilute hydrochloric acid. The student used the results to calculate that the energy released was 1.035 kJ. Calculate the enthalpy change (ΔH) for the reaction. Give your answer in kilojoules per mole of potassium carbonate. Relative formula mass (M₁): K₂CO₃ = 138


IB/M/Nov19/9202/1

05.3	Explain why the rate of the forward reaction decreases with time. Refer to particles and collisions in your answer. [2 marks]	Do not write outside the box
0 5.4	Draw a line on the graph in Figure 6 to show the concentration of sulfur trioxide during the reversible reaction. [1 mark]	
0 5.5	Compare the rates of the forward and backward reactions at equilibrium. [1 mark]	
	Question 5 continues on the next page	

Turn over ►

0 5 6 Sulfur trioxide reacts with water to produce sulfuric acid.

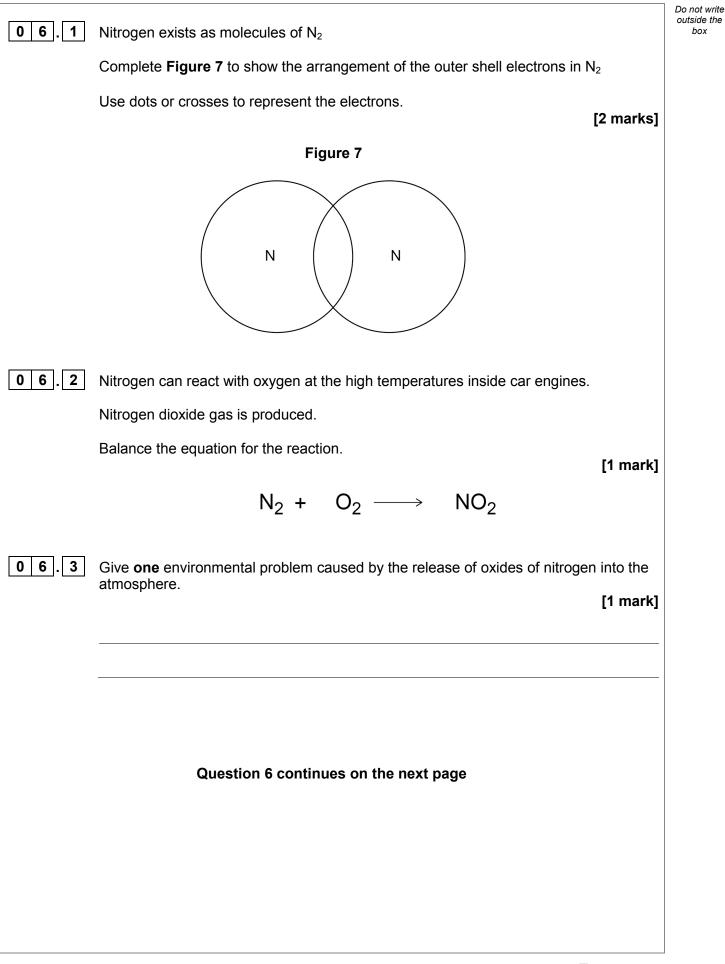
$$SO_3(g) + H_2O(I) \longrightarrow H_2SO_4(aq)$$

 5.00×10^7 cm³ of sulfur trioxide gas is reacted completely with water.

125 dm³ of sulfuric acid is produced.

Calculate the concentration of the sulfuric acid in mol/dm³

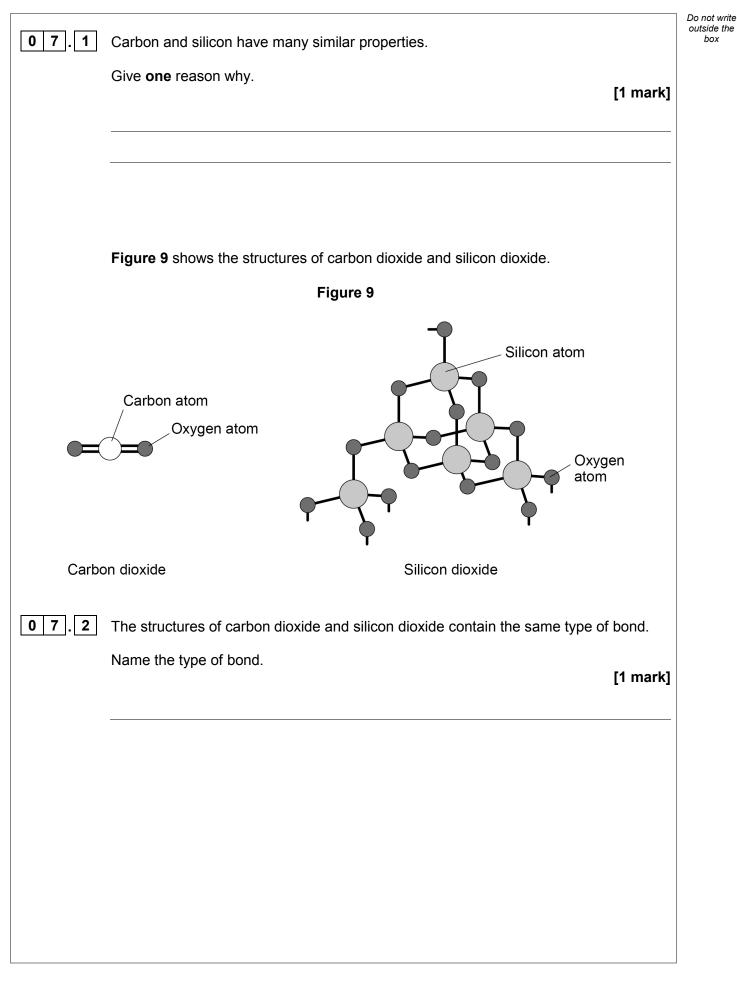
The volume of one mole of any gas at room temperature and pressure is 24.0 \mbox{dm}^3 [4 marks]


Concentration of sulfuric acid = _____ mol/dm³

11

Do not write outside the

box



		Do not write
0 6.4	Carbon monoxide is a toxic gas.	outside the box
	Most of the carbon in petrol is oxidised to carbon dioxide in a car engine.	
	Small amounts of carbon monoxide are also produced.	
	Explain why carbon monoxide is produced.	
	[2 marks]	
	Catalytic converters are fitted to the exhaust systems of cars.	
	Catalytic converters can remove nitrogen dioxide and carbon monoxide from gases produced by the car engine.	
	Figure 8 shows a catalytic converter.	
	Figure 8	
	Gases produced by car engine	
06.5	Nitrogen dioxide reacts with carbon monoxide on the surface of the catalyst.	
	nitrogen dioxide + carbon monoxide \rightarrow nitrogen + X	
	Name product X. [1 mark]	

	The catalyst in the catalytic converter is made of small particles of different sizes.	Do not write outside the box
	Some of these particles are nanoparticles.	
06.6	Give the approximate size of a nanoparticle. [1 mark]	
06.7	The total cost of the catalyst is reduced by using nanoparticles rather than larger particles. Give one reason why the total cost is reduced. [1 mark]	
	Turn over for the next question	9
	Turn over for the next question	
	Turn over ►	

0 7.3	Carbon dioxide is a gas at room temperature.		outside the box
	Silicon dioxide is a solid at room temperature.		
	Explain why carbon dioxide and silicon dioxide have different states at room temperature.		
	Use Figure 9 and your own knowledge.	[5 marks]	
			7
	Turn over for the next question		
	Т	urn over 🕨	

08

 Table 5 gives information about elements G, J, and L.

The letters **G**, **J**, and **L** are **not** the symbols of the elements.

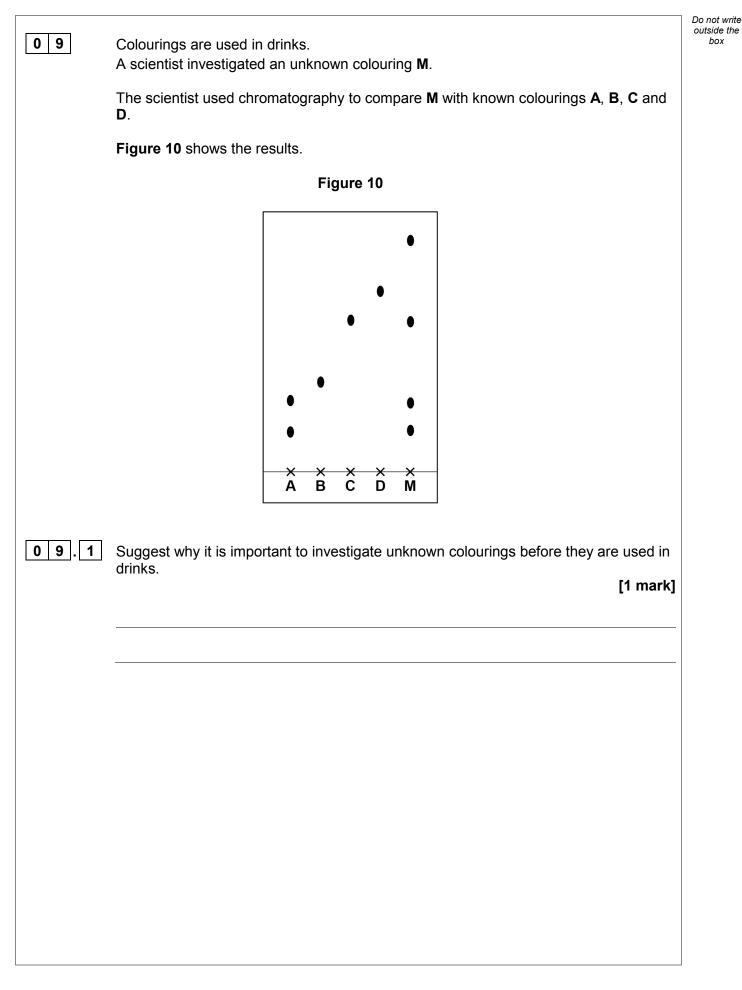
Table #	5

Element	G	J	L
Melting point in °C	1083	181	1535
Density in g/cm ³	8.92	0.53	7.86
Hardness in arbitrary units	2.5	0.6	4.5
Electrical conductivity in arbitrary units	6 × 10 ⁷	1 × 10 ⁷	1 × 10 ⁷
Reaction with water	No reaction	Very fast reaction	Very slow reaction
Formulae of chlorides	G Cl	JCl	L Cl ₂
Formulae of chilondes	\mathbf{G} Cl ₂	301	L Cl₃
Colour of chlorideo	white		green
Colour of chlorides	blue/green	white	yellow

A student concludes that metals G, J and L are transition metals.

Evaluate the student's conclusion.

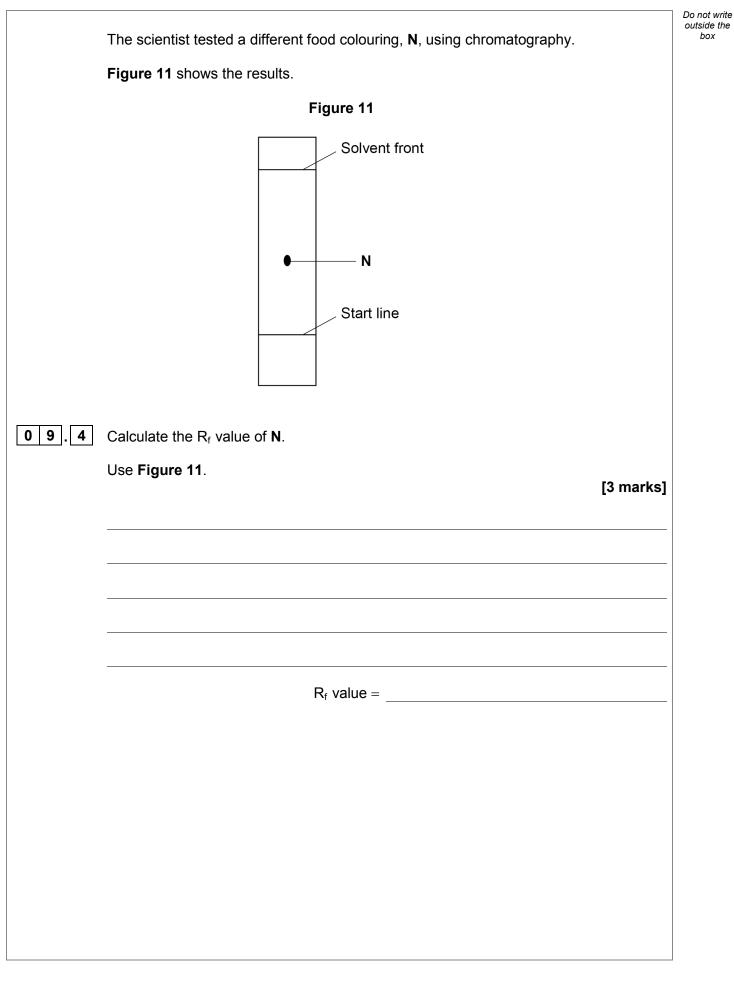
[6 marks]


6

Extra space

Turn over for the next question

Turn over ►



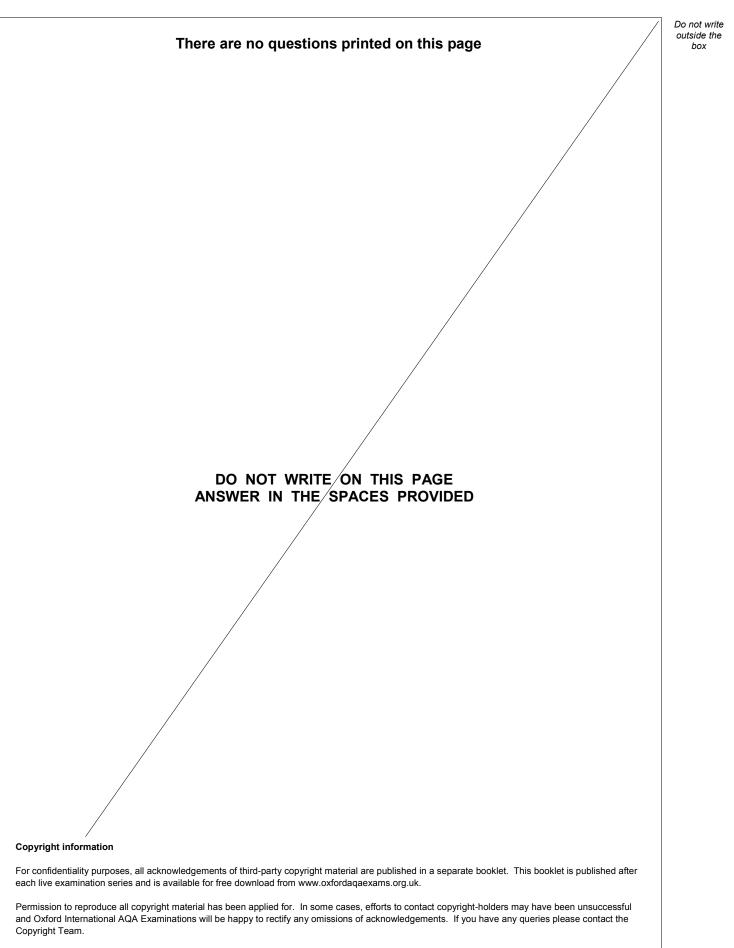
09.2	The results in Figure 10 show that colouring M is a mixture.	Do not write outside the box
	Give three conclusions about the composition of this mixture. [3 marks]	
	1	
	2	
	3	
09.3	The results in Figure 10 show that M is not a pure substance.	
	What is meant by a 'pure' substance? [1 mark]	
	Question 9 continues on the next page	
	Turn over ►	

lurn over

			Do not write
09.5	The scientist repeated the chromatography experiment in Figure 11 , using solvent.	a different	outside the box
	Food colouring N was less soluble in the new solvent.		
	Explain what effect, if any, this change would have on the R_f value of $\bm{N}.$	[2 marks]	
09.6	The scientist repeated the chromatography experiment in Figure 11 , using piece of chromatography paper.	a longer	
	The chromatography experiment was left to run for a longer time.		
	Explain what effect, if any, this change would have on the R_f value of $\bm{N}.$	[2 marks]	
			12
	END OF QUESTIONS		

Question number	Additional page, if required. Write the question numbers in the left-hand margin.	Do not write outside the box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.	Do not write outside the box


Question number	Additional page, if required. Write the question numbers in the left-hand margin.	Do not write outside the box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.	Do not write outside the box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.	Do not write outside the box

Copyright © 2019 Oxford International AQA Examinations and its licensors. All rights reserved

IB/M/Nov19/9202/1