Www.igexams.com OXFORD INTERNATIONAL AQA EXAMINATIONS		
Please write clearly in block capitals. Centre number Candidate number		
Surname		ÿ∎ Fer
INTERNATIONAL GCSE CHEMISTRY Paper 1 T	igexame elegram	s.com group
Friday 9 November 2018 07:00 GM1 Time allowed: 1 f Materials For this paper you must have: Image: 1 f • a pencil and a ruler • a scientific calculator Image: 1 f • the periodic table (enclosed). Image: 1 f Image: 1 f	For Exam	minutes iner's Use Mark
 Instructions Use black ink or black ball-point pen. Fill in the boxes at the top of this page. Answer all questions. You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages. If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s). Do all rough work in this book. Cross through any work you do not want 	2 3 4 5 6 7 8 TOTAL	

• Show all your working.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 90.
- You are expected to use a scientific calculator where appropriate.
- A periodic table is provided as a loose insert.

IB/M/Nov18/E14

	Answer all questions in the spaces provided.	Do not write outside the box
0 1	Figure 1 shows a nitrogen atom.	
	Figure 1	
0 1.1	The centre of the atom contains:	
	neutronsparticles with a positive charge.	
	What is the centre of the atom called? [1 mark]	
0 1.2	Give the name of the positively charged particles in Figure 1 . [1 mark]	
01.3	The nitrogen atom in Figure 1 has 7 neutrons.	
	Give the name of these atoms. [1 mark]	
0 1.4	Which of the following represents a nitrogen atom with 8 neutrons? Tick one box.	
	¹⁴ ₇ N	
	¹⁵ ₇ N	
	¹⁵ ₈ N	
	¹⁶ ₈ N	

0 2 A student heated two different metal carbonates and measured the changes in mass.

Figure 4 shows the apparatus the student used.

This is the method used:

- **1** Put some zinc carbonate in a crucible and measure the mass of the crucible and contents.
- 2 Heat the crucible for 1 minute.
- **3** Allow to cool and measure the mass of the crucible and contents.
- 4 Repeat steps 2 and 3 four more times.
- 5 Repeat steps 1 to 4 using sodium carbonate.

Table 1 shows the student's results.

Table 1

	Mass of crucible and contents in g		
Time in mins	Zinc carbonate	Sodium carbonate	
0	24.3	24.4	
1	23.9	24.4	
2	23.7	24.4	
3	23.6	24.4	
4	23.5	24.4	
5	23.5	24.4	

02.1	Complete the equation for the reaction of zinc carbonate by adding:		Do not write outside the box
	 state symbols for ZnCO₃ and CO₂ the formula of the missing product. [3] 	marks]	
	$ZnCO_3 (__) \longrightarrow __(s) + CO_2 (__)$		
02.2	What is the name of the type of reaction shown in Question 02.1 ? Tick one box.	1 mark]	
	Addition		
	Combustion		
	Decomposition		
	Oxidation		
02.3	Give the reason why the mass changes in the zinc carbonate experiment.	1 mark]	
02.4	How do the results in Table 1 show that zinc carbonate reacts completely?	1 mark]	
	Question 2 continues on the next page		

02.5	The reaction of zinc carbonate is endothermic.	Do not write outside the box
	Explain why, in terms of bond energies. [2 marks]	
02.6	Explain the results for sodium carbonate.	
	Use data from Table 1 in your answer. [2 marks]	
		10

Do not write outside the 0 3 3 The student repeated the experiment with 0.10 g of powdered magnesium instead of 0.10 g of magnesium ribbon. Explain the effect on the rate of reaction. [3 marks] The student investigated the effect of changing the concentration of hydrochloric acid on the rate of reaction. Table 2 shows the results. Table 2 **Concentration of hydrochloric** Rate of reaction in cm³/s acid in mol/dm³ 0.5 0.5 1.0 2.0 1.5 4.5 2.0 8.0 2.5 12.5 0 3 4 Describe the relationship between the concentration of hydrochloric acid and the rate of reaction. Use data from Table 2 in your answer. [2 marks]

box

0 4. **9 Table 4** gives some information about two different industrial processes for the manufacture of ethanol.

Table 4

	Ethanol from fermenting sugar	Ethanol from hydrating ethene
Raw materials	Sugar	Crude oil
Equation for process	$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$	$C_2H_4 \ + \ H_2O \ \rightarrow \ C_2H_5OH$

A company wants to manufacture large quantities of ethanol.

Evaluate which industrial process is better.

You should include economic and environmental factors.

Use information from Table 4 and your scientific knowledge.

[6 marks]

Do not write outside the

box

Extra space available on the next page if required

Turn over ►

	1 _
	Do not write
	box
	15

0 5 . 1	Describe	how hydrocarbons	are cracked to	produce smaller,	more useful m	olecules. [2 marks]
5.2	Dodecane	$(C_{12}H_{26})$ can be cr	racked into hept	tane (C ₇ H ₁₆) and t	two different a	Ilkenes.
	Complete	the equation for thi	is reaction.			[1 mark]
	C ₁₂	$H_{26} \longrightarrow C^{-1}$	₇ H ₁₆ +	+		
5.3	Give one	use of alkenes.				[1 mark]
0 5 . 4	Suggest v	vhy heptane (C ₇ H ₁₆) is a better fue	I than dodecane ((C ₁₂ H ₂₆).	
0 5.4	Suggest v	vhy heptane (C ₇ H ₁₆) is a better fue	l than dodecane ((C ₁₂ H ₂₆).	[1 mark]
) 5.4	Suggest v	vhy heptane (C ₇ H ₁₆) is a better fue	I than dodecane ((C ₁₂ H ₂₆).	[1 mark]
0 5.4	Suggest v	vhy heptane (C ₇ H ₁₆) is a better fue t for alkenes.	l than dodecane ((C ₁₂ H ₂₆).	[1 mark]
0 5.4	Suggest v Bromine v Complete	vhy heptane (C ₇ H ₁₆	;) is a better fue	I than dodecane ((C ₁₂ H ₂₆).	[1 mark]
0 5.4	Suggest v Bromine v Complete Use words	vhy heptane (C ₇ H ₁₆ vater is used to test the sentence. s from the box.) is a better fue t for alkenes.	I than dodecane ((C ₁₂ H ₂₆).	[1 mark]
0 5.4	Suggest v Bromine v Complete Use words	vhy heptane (C ₇ H ₁₆ vater is used to test the sentence. s from the box.) is a better fue t for alkenes. green	I than dodecane ((C ₁₂ H ₂₆).	[1 mark]
0 5.4	Suggest v Bromine v Complete Use words blue Bromine v	vhy heptane (C ₇ H ₁₆ vater is used to test the sentence. s from the box. colourless	;) is a better fue t for alkenes. green ur from	I than dodecane ((C ₁₂ H ₂₆).	[1 mark]

Some alkene molecules have more than one carbon–carbon double bond.

Bromine water can be used to compare the number of double bonds.

A student used bromine water to investigate two alkenes **A** and **B**.

This is the method used:

- 1 Put 15 drops of alkene A in a boiling tube.
- **2** Add bromine water dropwise from a dropping pipette until the bromine water stops changing colour.
- 3 Repeat steps 1 and 2 for alkene B.

Table 5 shows the student's results.

Table 5

Alkene	Number of drops of bromine water added
Α	30
В	60

0 5 . 6 A drop from the pipette has a volume of 0.10 cm³

The bromine water has a concentration of 0.20 mol/dm³

Calculate the number of moles of bromine added to alkene **B**.

[3 marks]

Number of moles of bromine =

06	This ques	tion is about tests for positive ar	nd negative ions.	Do n outs	not writ Iside the box	
	A student tested four unknown solutions, C, D, E and F.					
	Table 6 shows some of the results.					
		Table 6				
	Solution	Test	Result	7		
	С	Add sodium hydroxide solution	Blue precipitate forms			
	D	Add dilute sulfuric acid followed by barium chloride solution	White precipitate forms			
	E	Add dilute nitric acid followed by silver nitrate solution	Cream precipitate forms			
	F	Add dilute nitric acid followed by silver nitrate solution	Precipitate forms			
06.2	Name the Which ha	metal ion present in solution C . lide ion is present in solution E ?		[1 mark]		
	Bromide			[1 mark]		
	Chloride					
	Fluoride					
	lodide					

06.3	The student concluded that solution D contains sulfate ions.	Do not write outside the box
	Is the conclusion correct?	
	Explain your answer. [3 marks]	
06.4	The student could not decide the colour of the precipitate formed in solution F .	
	To identify the halide ion the student added a known amount of silver nitrate solution to solution ${f F}$.	
	Describe a method to find the mass of the precipitate formed.	
	You do not need to give details of the calculation. [4 marks]	
	Question 6 continues on the next page	

Turn over ►

0 6.5	The student added silver nitrate solution containing 0.005 mol of silver ions (Ag ⁺) to solution \mathbf{F} .	Do not write outside the box
	The mass of the precipitate obtained was 1.18 g.	
	The ionic equation shows the reaction between silver ions (Ag ⁺) and the unknown halide ion (X^-).	
	$Ag^{+}(aq) + X^{-}(aq) \longrightarrow AgX(s)$	
	Calculate the relative atomic mass (A_r) of X .	
	Give the name of the halide ion X [−] .	
	Relative atomic mass (A_r): Ag = 108	
	[3 marks]	
	$(A_r) \mathbf{X} = $	12
	Name of halide ion, X ⁻ =	12

0 7	This question is about Group 1 chlorides.	Do not write outside the box
	Figure 11 shows the structure of potassium chloride (KCl).	
	Figure 11	
	Chloride ion (Cl ⁻) Potassium ion (K ⁺)	
07.1	Explain why potassium chloride has a high melting point. [4 marks]	
07.2	Give the reason why solid potassium chloride does not conduct electricity. [1 mark]	
	Question 7 continues on the next page	

0 7.3	A single crystal of potassium chloride has a mass of 0.298 g.	Do not write outside the box
	Calculate the number of ions in this crystal.	
	Give your answer to 3 significant figures.	
	Avogadro's constant = 6.02×10^{23}	
	Relative atomic masses (A_r): Cl = 35.5 K = 39	
	[4 marks]	
	Number of ions =	

Table 7

0 7. **4 Table 7** shows information about Group 1 chlorides.

Compound	Metal ion present	Size of metal ion in nm	Melting point of chloride in °C
Lithium chloride	Li⁺	0.074	605
Sodium chloride	Na⁺	0.102	802
Potassium chloride	K⁺	0.138	770
Rubidium chloride	Rb⁺	0.149	718
Caesium chloride	Cs⁺	0.170	645

A student saw the following statement in a chemistry textbook.

'The smaller the metal ion the higher the melting point of the metal chloride'

Evaluate how well the data in Table 7 agrees with this statement.

[2 marks]

11

Do not write outside the

box

Turn over for the next question

Turn over ►

08	Figure 12 shows the electrolysis of sodium chloride solution to produce hydrogen and chlorine gas.	
	Figure 12	
	Chlorine Hydrogen	
08.1	Describe the effect of chlorine gas on damp blue litmus paper. [2 marks]	
08.2	Give one use for chlorine. [1 mark]	
08.3	Write the half equation for the formation of chlorine at the positive electrode. [2 marks]	

08.4	Give the reason why hydrogen is formed at the negative electrode instead of sodium. [1 mark]	Do not write outside the box
08.5	Name the other product formed by the electrolysis of sodium chloride solution. [1 mark]	
08.6	Chlorine can also be produced by reacting manganese oxide (MnO_2) with hydrochloric acid (HCl).	
	$MnO_2 + 4HCl \longrightarrow MnCl_2 + Cl_2 + 2H_2O$	
	Calculate the maximum volume of chlorine gas produced by reacting 4.35 g of manganese oxide with an excess of hydrochloric acid.	
	The molar gas volume at room temperature and pressure is 24 dm ³	
	Give the volume in cm ³ at room temperature and pressure.	
	Relative atomic masses (A_r): O = 16 Mn = 55 [4 marks]	
	Maximum volume of chlorine gas = cm ³	
	END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, acknowledgements of third-party copyright material are published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.oxfordaqaexams.org.uk after the live examination series.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.
	Copyright © 2019 Oxford International AQA Examinations and its licensors. All rights reserved.

