

## INTERNATIONAL GCSE GCSE Physics

**Physics Equations Sheet** 

Insert

## 9203 GCSE PHYSICS EQUATIONS SHEET

|                                               | y volocity                                                                 |
|-----------------------------------------------|----------------------------------------------------------------------------|
| $v = \frac{S}{}$                              | v     velocity       s     displacement                                    |
| t                                             |                                                                            |
|                                               |                                                                            |
| $a = \frac{\Delta v}{t}$                      | a acceleration                                                             |
|                                               | $\Delta v$ change in velocity                                              |
|                                               | t time taken                                                               |
|                                               | F force                                                                    |
| $F = m \times a$                              | m mass                                                                     |
|                                               | a acceleration                                                             |
|                                               | p momentum                                                                 |
| $p = m \times v$                              | m mass                                                                     |
|                                               | v velocity                                                                 |
| $\Lambda n$                                   | F force                                                                    |
| $F = \frac{\Delta p}{t}$                      | $\Delta p$ change in momentum                                              |
| l l                                           | t time                                                                     |
|                                               | W weight                                                                   |
| $W = m \times g$                              | m mass                                                                     |
|                                               | g gravitational field strength                                             |
|                                               | F force                                                                    |
| $F = k \times e$                              | k spring constant                                                          |
|                                               | e extension                                                                |
|                                               | W work done                                                                |
| $W = F \times d$                              | F force                                                                    |
|                                               | d distance moved in the direction of the force                             |
| W                                             | P power                                                                    |
| $P = \frac{W}{M}$                             | $\overline{W}$ work done                                                   |
| I I                                           | t time                                                                     |
| E                                             | P power                                                                    |
| $P = \frac{E}{L}$                             | E energy transferred                                                       |
| t                                             | t time                                                                     |
|                                               | $E_{ m p}$ change in gravitational potential energy                        |
| $E_{p} = m \times g \times h$                 | m = mass                                                                   |
|                                               | g gravitational field strength (acceleration of free fall)                 |
|                                               | h height                                                                   |
| 1                                             | $E_{ m k}$ kinetic energy                                                  |
| $E_{k} = \frac{1}{2} \times m \times v^{2}$   | m = mass                                                                   |
| <u>Z</u>                                      | v velocity                                                                 |
|                                               | $E_{ m e}$ elastic potential energy                                        |
| $E_{\rm e} = \frac{1}{2} \times k \times e^2$ | k spring constant                                                          |
| e 2 mm                                        | e extension                                                                |
|                                               | M moment of the force                                                      |
| $M = F \times d$                              | F force                                                                    |
| 174 4 110                                     | d perpendicular distance from the line of action of the force to the pivot |
| <u> </u>                                      | perpendicular distance from the line of action of the force to the pivot   |

| $v = f \vee \lambda$                                                             | v speed f frequency                             |  |  |
|----------------------------------------------------------------------------------|-------------------------------------------------|--|--|
| $v - t \vee \lambda$                                                             | 1 F                                             |  |  |
| $v = f \times \lambda$                                                           | , ,                                             |  |  |
|                                                                                  | λ wavelength                                    |  |  |
| sin i                                                                            | n refractive index                              |  |  |
| $n = \frac{\sin i}{\sin r}$                                                      | i angle of incidence                            |  |  |
|                                                                                  | r angle of refraction                           |  |  |
| 1                                                                                | n refractive index                              |  |  |
| $n = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$                               | c critical angle                                |  |  |
|                                                                                  |                                                 |  |  |
| $magnification = \frac{image \ height}{t}$                                       |                                                 |  |  |
| object height                                                                    |                                                 |  |  |
|                                                                                  |                                                 |  |  |
| $E = m \times c \times \Delta \theta$                                            | E energy                                        |  |  |
|                                                                                  | m mass                                          |  |  |
|                                                                                  | c specific heat capacity                        |  |  |
|                                                                                  | $\Delta 	heta$ temperature change               |  |  |
| $E = m \times L_{V}$                                                             | E energy                                        |  |  |
|                                                                                  | m mass                                          |  |  |
|                                                                                  | $L_{ m V}$ specific latent heat of vaporisation |  |  |
|                                                                                  | E energy                                        |  |  |
| $E = m \times L_{\rm F}$                                                         | m mass                                          |  |  |
|                                                                                  | $L_{ m F}$ specific latent heat of fusion       |  |  |
| efficiency = $\frac{\text{useful energy out}}{\text{useful energy out}}$ (×100%) |                                                 |  |  |
| total energy in                                                                  |                                                 |  |  |
| £.1                                                                              |                                                 |  |  |
| efficiency = $\frac{\text{useful power out}}{\text{useful power out}}$ (×100%)   |                                                 |  |  |
| total power                                                                      | er in                                           |  |  |
| 0                                                                                | I current                                       |  |  |
| $I = \frac{Q}{t}$                                                                | Q charge flow                                   |  |  |
|                                                                                  | t time                                          |  |  |
| $V = \frac{E}{Q}$ $V = I \times R$                                               | V potential difference                          |  |  |
|                                                                                  | E energy transferred                            |  |  |
|                                                                                  | Q charge                                        |  |  |
|                                                                                  |                                                 |  |  |
|                                                                                  | 1                                               |  |  |
|                                                                                  |                                                 |  |  |
|                                                                                  |                                                 |  |  |
| $P=I\times V$                                                                    | ·                                               |  |  |
|                                                                                  |                                                 |  |  |
|                                                                                  | P                                               |  |  |
|                                                                                  | 3.                                              |  |  |
| $E(kW h) = P(kW) \times t(h)$                                                    |                                                 |  |  |
|                                                                                  | t time                                          |  |  |
| $P = I \times V$ $E(kW h) = P(kW) \times t(h)$                                   | J.                                              |  |  |

Oxford AQA International GCSE Physics (9203). For exams June 2018 onwards. Version 2.0  $\,$ 

| $\frac{V_{\rm p}}{V_{\rm s}} = \frac{n_{\rm p}}{n_{\rm s}}$                   | $V_{ m p}$ potential difference across the primary coil $V_{ m s}$ potential difference across the secondary coil $n_{ m p}$ number of turns on the primary coil $n_{ m s}$ number of turns on the secondary coil                                                          |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $V_{\mathrm{p}} \times I_{\mathrm{p}} = V_{\mathrm{s}} \times I_{\mathrm{s}}$ | $\begin{array}{ll} V_{\rm p} & \text{potential difference across the primary coil} \\ I_{\rm p} & \text{current in the primary coil} \\ V_{\rm s} & \text{potential difference across the secondary coil} \\ I_{\rm s} & \text{current in the secondary coil} \end{array}$ |