OXFORD

INTERNATIONAL
AQA EXAMINATIONS

Please write clearly in block capitals.

Centre number \square Candidate number

Surname
Forename(s) \qquad
Candidate signature \qquad

INTERNATIONAL GCSE

PHYSICS

Paper 1

Wednesday 6 November 2019 07:00 GMT Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you worked out your answer.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
TOTAL	

Information

- The maximum mark for this paper is 90 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.

| | Answer all questions in the spaces provided. |
| :--- | :--- | :--- |
| $\mathbf{0} \mathbf{1} \quad$ Figure 1 shows identical resistors \mathbf{A} and \mathbf{B} connected in series with a 6.0 V battery. | |

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Tick (\checkmark) one box.

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{2}$ A charge of 0.40 coulombs flows through resistor \mathbf{A} in a time of 8.0 seconds. ${ }^{2}$.

Calculate the current in resistor \mathbf{A}.
Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
Current $=$

0	1	3

Choose the answer from the box.

greater than	less than
the same as	

The current in resistor \mathbf{A} is \qquad the current in resistor B.

| 0 | 1 | 4 |
| :--- | :--- | :--- | Each resistor in Figure 1 has a resistance of 30Ω.

Determine the total resistance of the circuit in Figure 1.
\qquad
\qquad
Total resistance $=$ Ω

Question 1 continues on the next page

Figure 2 shows resistors \mathbf{A} and \mathbf{B} connected in parallel with the same 6.0 V battery.
Figure 2

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{5}$ What is the potential difference across each resistor? |
| :--- | :--- | :--- | :--- |

Tick (\checkmark) one box.
3.0 V

6.0 V

9.0 V

12.0 V

0	1	6

Determine the current in resistor \mathbf{A}.
Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
Current $=$ \qquad A

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{7}$ Determine the current in the 6.0 V battery.

\qquad
\qquad

0	1	8	Complete the sentence.

Choose the answer from the box.

greater than	less than
the same as	

The total resistance of the parallel circuit in Figure 2 is \qquad
the total resistance of the series circuit in Figure 1.
greater than

\square

The sensor warns the driver if the car is too close to another object.

$\mathbf{0}$	$\mathbf{2} .1$	Explain why humans cannot hear the ultrasound emitted by the sensor.

\qquad
\qquad
\qquad
\qquad

Figure 3 shows a car about to reverse towards a wall.
Figure 3

The sensor emits an ultrasound wave.
The wave reflects off the wall and is detected by the sensor.
The sensor measures the time taken between the wave being emitted and detected.

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{2}$ The speed of ultrasound in air is $330 \mathrm{~m} / \mathrm{s}$.

The reflected ultrasound is detected 0.012 s after it is emitted.
Calculate the total distance travelled by the ultrasound wave.
Use the equation:
total distance travelled $=$ speed \times time
\qquad
\qquad
\qquad
\qquad
\qquad
Total distance travelled $=$ \qquad m
$\begin{array}{lllll}\mathbf{0} & \mathbf{2} & \mathbf{3} \text { (Determine the distance between the sensor and the wall. }\end{array}$
\qquad
Distance $=$ m

Question 2 continues on the next page

$\mathbf{0}$	$\mathbf{2} .4$	$\mathbf{4}$ When the car gets too close to an object, a beeper gives a warning to the driver.

The beeper emits sound waves that travel at a speed of $330 \mathrm{~m} / \mathrm{s}$ and have a wavelength of 0.75 m .

Calculate the frequency of the sound wave.
Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
Frequency = Hz

$\mathbf{0}$	$\mathbf{3}$ Stearic acid is a solid at room temperature.

Which of the following shows the arrangement of particles in stearic acid when it is a liquid?

Tick (\checkmark) one box.

\square

The student wanted to plot a graph of temperature against time for liquid stearic acid as it cooled.

Describe how the student could use the equipment in Figure 4 to collect the data.
[6 marks]
Figure 4

Solid stearic acid

Beaker

Thermometer

Stop clock
\qquad

Question 3 continues on the next page

Figure 5 shows a graph of the student's results.
Figure 5

| 0 | $\mathbf{3}$ | $\mathbf{3}$ Determine the time taken from when the liquid begins to change state until it is |
| :--- | :--- | :--- | :--- | completely solid.

\qquad
\qquad
\qquad
Time taken $=$ \qquad seconds
 mass of stearic acid $=15 \mathrm{~g}$ specific heat capacity of liquid stearic acid $=560 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$ Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Energy transferred = \qquad J

Turn over for the next question

| 0 | 4 | A student investigated how the distance between a lamp and a solar panel affected |
| :--- | :--- | :--- | the power output of the solar panel.

Figure 6 shows some of the equipment used.
Figure 6

Power output meter

The student measured the power output of the solar panel when the lamp was at different distances.

| 0 | 4 | 1 |
| :--- | :--- | :--- | What type of variable is the power output of the solar panel?

Tick (\checkmark) one box.

Categoric \square

Control

Dependent

Independent

Figure 7 shows the results of the investigation.
Figure 7

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{2}$ One of the results is anomalous.

What is meant by an anomalous result?
\qquad
\qquad

0	4	3

Suggest a reason for this anomalous result.
\qquad
\qquad

Question 4 continues on the next page

| 0 | 4 | 4 |
| :--- | :--- | :--- | solar panel.

\qquad
\qquad
\qquad
\qquad

| 0 | 4 | 5 |
| :--- | :--- | :--- | Another student does a similar investigation using a voltmeter and an ammeter.

Describe how the student could use a voltmeter and an ammeter to measure the power output of the solar panel.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Figure 8

Table 1 shows data for road solar panels and roof solar panels.

Table 1

	Area of solar panel in $\mathbf{m}^{\mathbf{2}}$	Life span in years	Energy output in kWh	Manufacturing cost of each solar panel in dollars
Road solar panel	1.8	20	70	5300
Roof solar panel	1.8	20	106	750

| 0 | $\mathbf{4} .6$ | Evaluate why the manufacturers of the road solar panels are trying to reduce |
| :--- | :--- | :--- | manufacturing costs rather than increase the energy output.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 5 | Figure 9 shows a child on a climbing wall. There is a crash mat at the bottom of the |
| :--- | :--- | :--- | wall.

Figure 9

The child jumps off the climbing wall and lands on the crash mat. The momentum of the child just before landing is $160 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$.

| 0 | 5 | 1 |
| :--- | :--- | :--- | Calculate the velocity of the child on landing.

mass of child $=50 \mathrm{~kg}$
Give the unit.
Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
Velocity $=$ \qquad Unit \qquad

$\mathbf{0}$	$\mathbf{5} .2$	It takes 0.80 s for the child to stop after hitting the crash mat.

Calculate the average force the child exerts on the crash mat during landing.
Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
Average force $=$

0	5	3	Explain why the crash mat reduces the risk of injury if the child falls.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

0	6

| 0 | 6 | 1 |
| :--- | :--- | :--- | Where does nuclear fusion occur naturally?

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Table 2 shows some data about a fission engine and a fusion engine.

Table 2

Type of engine	Fuel used by engine	Energy required to produce $\mathbf{1} \mathbf{~ k g}$ of fuel in joules	Energy released by $\mathbf{1} \mathbf{~ k g}$ of fuel in joules
Fission	Plutonium	6.0×10^{11}	8.0×10^{13}
Fusion	Hydrogen	4.0×10^{11}	2.0×10^{14}

| 0 | 6. | 3 |
| :--- | :--- | :--- | rocket.

Use Table 2.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	6	4
Describe a nuclear fission reaction.		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	$\mathbf{7}$	Figure 10 shows the International Space Station (ISS) orbiting the Earth.

Figure 10

| $\mathbf{0}$ | $\mathbf{7} .1$ |
| :--- | :--- | $\mathbf{1}$ What name is given to an object that orbits a planet?

Tick (\checkmark) one box.

A comet

A galaxy

A satellite

A star

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{2}$ The Earth exerts a gravitational force on the ISS.

Draw an arrow on Figure 10 to show the direction of this force.

0	7	3	The ISS travels at a constant speed around the Earth.

Explain how an object can be accelerating whilst travelling at a constant speed. [3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{7} .4$	$\mathbf{4}$ When in orbit, the ISS has a kinetic energy of $1.2 \times 10^{13} \mathrm{~J}$.

Calculate the magnitude of the velocity of the ISS.
mass of ISS $=4.2 \times 10^{5} \mathrm{~kg}$
Give your answer to 2 significant figures.
Use the Physics Equations Sheet.
[4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Magnitude of velocity $=$ \qquad m/s

Question 7 continues on the next page

0	$\mathbf{7}$	$\mathbf{5}$	Rockets do work on the ISS.

Explain the effect the work done has on the orbit of the ISS.
[3 marks]
Do not write
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	8	Figure 11 shows a battery-operated drill.

When the drill is turned on, the drill bit spins around.
Figure 11

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{1}$ Describe the energy transfers in the drill when it is first turned on.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 8 continues on the next page

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{2}$

The potential difference of the battery is 18.0 V .
The drill is turned on and 30.0 C of charge flows through the battery.
Calculate the time for which the drill was turned on.
Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Time $=$

Figure 12 shows a mains-operated drill.
Figure 12

| 0 | 8 | 3 |
| :--- | :--- | :--- | supplied by a battery.

\qquad
\qquad
\qquad
\qquad

| 0 | 8 | 4 |
| :--- | :--- | :--- | The drill in Figure 12 has a power rating of 1500 W .

The drill is used for 0.5 hours.
The cost of using the drill is $\$ 0.15$.
Calculate the cost per kWh of the mains electricity.
Use the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
Cost per kWh = \$

ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk.
ins to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright © 2019 Oxford International AQA Examinations and its licensors. All rights reserved

