

OXFORD AQA INTERNATIONAL GCSE GCSE Physics

Physics equation sheet

Insert

Oxford AQA International GCSE Physics (9203). For exams June 2018 onwards. Version 2.0

9203 GCSE PHYSICS EQUATION SHEET

$v = \frac{s}{t}$	v	velocity
	S	displacement
	t	time
$a = \frac{\Delta v}{t}$	a	acceleration
	Δv	change in velocity
	t	time taken
$F = m \times a$	F	force
	m	mass
	a	acceleration
$p=m \times v$	p	momentum
	m	mass
	v	velocity
$F = \frac{\Delta p}{t}$	F	force
	Δp	change in momentum
	t	time
$W = m \times g$	W	weight
	m	mass
	g	gravitational field strength
$F = k \times e$	F	force
	k	spring constant
	е	extension
$W = F \times d$	W	work done
	F	force
	d	distance moved in the direction of the force
$P = \frac{W}{t}$	P	power
	W	work done
	t	time
E E	P	power
$P = \frac{T}{t}$	E	energy transferred
	t	time
	E_p	change in gravitational potential energy
$E_p = m \times g \times h$	m	mass
	g	gravitational field strength (acceleration of free fall)
	h	height
$\mathbf{r} = 1/2$	E_k	kinetic energy
$E_k = \frac{1}{2} \times m \times v^2$	m	mass
	V	velocity
$E_e = \frac{1}{2} \times k \times e^2$	E_e	elastic potential energy
	k	spring constant
	e	extension
	M	moment of the force
$M = F \times d$	F	force
	d	perpendicular distance from the line of action of the force to the pivot

	v speed
$v = f \times \lambda$	f frequency
	λ wavelength
$n = \frac{\sin i}{i}$	n refractive index
$n = \frac{1}{\sin r}$	<i>i</i> angle of incidence
51117	<i>r</i> angle of refraction
1	n refractive index
$n = \frac{1}{\sin c}$	c critical angle
magnification = $\frac{\text{image h}}{1}$	neight
object h	neight
$E = m \times c \times \Delta \theta$	E energy
	<i>m</i> mass
	c specific heat capacity
	$\Delta heta$ temperature change
	E energy
$E = m \times L_V$	<i>m</i> mass
	$L_{_V}$ specific latent heat of vaporisation
	E energy
$E = m \times L_F$	<i>m</i> mass
	$L_{_{F}}$ specific latent heat of fusion
efficiency = $\frac{\text{useful energy}}{\text{total energy}}$	
efficiency = $\frac{\text{useful powe}}{\text{total powe}}$	er out er in (×100%)
	I current
$I = \frac{Q}{t}$	Q charge flow
	t time
	V potential difference
$V = \frac{E}{Q}$	<i>E</i> energy transferred
	Q charge
$V = I \times R$	
	Y THE
	I current R resistance
$P = I \times V$	P power
	I current
	V potential difference
	E energy transferred
$E(kWh) = P(kW) \times t(h)$	P power
	t time

Oxford AQA International GCSE Physics (9203). For exams June 2018 onwards. Version 2.0

$\frac{V_p}{V_s} = \frac{n_p}{n_s}$	V_p potential difference across the primary coil V_s potential difference across the secondary coil n_p number of turns on the primary coil n_s number of turns on the secondary coil
$V_p \times I_p = V_s \times I_s$	V_p potential difference across the primary coil I_p current in the primary coil V_s potential difference across the secondary coil I_s current in the secondary coil