Alkanes: Fuels & Pollution

Mark Scheme

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	The Core Principles of Chemistry
Sub Topic	Alkanes: Fuels & Pollution
Booklet	Mark Scheme

Time Allowed: 47 minutes

Score: /39

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question Number	Correct Answer	Reject	Mark
1 (a)	D		1
	Incorrect Answers:		
	A – Atom economy of ethene, not all		
	alkenes		
	B - Ethene not doubled in numerator		
	but doubled in denominator		
	C- Atom economy where ethene not		
	doubled		

Question Number	Correct Answer	Reject	Mark
1 (b)	В		1
	Incorrect Answers:		
	A – Incorrect reason for use of		
	cracking		
	C - Incorrect reason for use of		
	cracking		
	D- Incorrect reason for use of		
	cracking		

Question Number	Correct Answer	Reject	Mark
2	С		1
	Incorrect Answers: A – Carbon dioxide does cause global warming B - Carbon dioxide does cause ice caps to melt D- Carbon dioxide does cause sea levels to rise		

Question Number	Correct Answer	Mark
3	A	1

Question	Correct Answer	Mark
Number		
4	D	1

Question Number	Correct Answer	Mark
5	D	1

Question Number	Correct Answer	Mark
6	С	1

Question Number	Acceptable Answers	Reject	Mark
7(a)(i)	Alkane(s)		1
	IGNORE		
	Any references to 'branched' /		
	`aliphatic' / `hydrocarbons'		

Question	Acceptable Answers	Reject	Mark
Number			
7(a)(ii)	2,3- di methyloctane		1
	IGNORE		
	Incorrect or missing punctuation		

Question Number	Acceptable Answers	Reject	Mark
7(a)(iii)	mark: (Isomers) A and C (1)		3
	NOTE If no isomers or isomers other than A & C have been chosen, then award one mark max providing both 2 nd and 3 rd marking points are evident.	'Different chemical formulae'	
	2nd mark: (They/A and C) have the same molecular formula / C ₁₀ H ₂₂ / same number of C and H (atoms) (1)		
	3rd mark: (They/A and C) have different structural formulae/displayed formulae / skeletal formulae / different structures/different arrangement of atoms IGNORE Any references to 'in space' / 'spatial' Any references to names Any references to general formulae (1)		

Question Number	Acceptable Answers	Reject	Mark
7(a)(iv)	C ₁₂ H ₂₄		2
	1st mark: C ₁₂ (1)		
	2nd mark: H ₂₄ (1)		

Question Number	Acceptable Answers	Reject	Mark
7(b)(i)	OR B		1
	ALLOW lower case letters IGNORE any names or formulae		

Question Number	Acceptable Answers	Reject	Mark
7(b)(ii)	OR D ALLOW lower case letters IGNORE any names or formulae		1

Acceptable Answers	Reject	Mark
Any one of: (It improves engine performance by) Promoting efficient combustion OR Allowing smoother burning OR Increasing octane number OR Reduces knocking / prevents knocking OR Pre-ignition being less likely OR Being (more) efficient (fuels) OR Better burning / fuels easier to burn OR Combusting more easily OR Improving combustion / complete combustion OR Burns more cleanly OR More miles per gallon IGNORE any references to energy density / boiling temperature /	Reject	1 1
IGNORE any references to energy		
	Any one of: (It improves engine performance by) Promoting efficient combustion OR Allowing smoother burning OR Increasing octane number OR Reduces knocking / prevents knocking OR Pre-ignition being less likely OR Being (more) efficient (fuels) OR Better burning / fuels easier to burn OR Combusting more easily OR Improving combustion / complete combustion OR Burns more cleanly OR More miles per gallon IGNORE any references to energy density / boiling temperature /	Any one of: (It improves engine performance by) Promoting efficient combustion OR Allowing smoother burning OR Increasing octane number OR Reduces knocking / prevents knocking OR Pre-ignition being less likely OR Being (more) efficient (fuels) OR Better burning / fuels easier to burn OR Combusting more easily OR Improving combustion / complete combustion OR Burns more cleanly OR More miles per gallon IGNORE any references to energy density / boiling temperature /

Question Number	Acceptable Ans	swers		Reject	Mark
7(d)	[FIRST, check answer line IF answer = 48 (3) marks]	3000 (kJ kg ⁻			3
	1000 (1)		(1)		
	OR				
	8086 (1)	x 1000	(1)		
	NOTE: second dependent on finior transcripe.g. use of 110	first mark un otion error ir	nless one n first mark		
	3rd mark = 47564.70588 = 48000	3	(1)		
	Answer must b Ignore signs units at any s	and / or in	correct		
	48 scores (2) 47.56 scores (1374.6 scores 2SF	-	rounded to		

(Total for Question 7 = 13 marks)

Question Number	Acceptable Answers	Reject	Mark
8(a)	Fractional distillation		1
	Both words needed		

Question Number	Acceptable Answers	Reject	Mark
8(b)(i)	C_9H_{20}		1

Question Number	Acceptable Answers	Reject	Mark
8(b)(ii)	Correct skeletal formula (1) Correct name for the structure drawn providing that the structure is a branched-chain isomer of C ₉ H ₂₀	Structural or displayed formula	2
	NO TE for name if skeletal formula is incorrect		
	ALLOW Correct name, even if structural or displayed formula has been drawn (1)		
	EXAMPLES of correct skeletal formulae and names		
	2-methyloctane		
	3-methyloctane		
	4-methyloctane		

Question Number	Acceptable Answers	Reject	Mark
8(c)(i)	$C_{15}H_{32} \rightarrow C_{13}H_{28} + C_2H_4$ IGNORE State symbols, even if incorrect ALLOW Correct structural OR displayed OR skeletal OR mixture of these (as long as unambiguous)		1

Question Number	Acceptable Answers	Reject	Mark
8(c)(ii)	Any carbon-carbon bond (in the chain) can break OR The carbon chain can break/split in different places OR Carbon chain is cracked in many places / different places OR C ₁₃ H ₂₈ / product will break down further IGNORE 'Molecule can break anywhere' / 'It breaks into smaller molecules' / 'large number of C atoms' / 'bonds break randomly' / 'hydrocarbon chain is long'		1

Question Number	Acceptable Answers	Reject	Mark
8(d)(i)	Two double bonds anywhere on the RING (allow them to be adjacent). e.g.	If any other incorrect structure is included with the final answer	1
		Any 5-valent C atom in structure scores (0)	
	ALLOW One triple bond (instead of two double bonds) BUT not adjacent to a methyl group		
	ALLOW: (ie double bond(s) on side-chain)	If the methyl groups are joined by a bond	
		(0)	
		Benzene ring (0)	

Question Number	Acceptable Answers	Reject	Mark
——————————————————————————————————————	NOTE The answer must relate to combustion or burning To promote efficient combustion OR To increase octane number OR To reduce knocking OR Pre-ignition less likely ALLOW To allow smoother burning OR More efficient fuels OR Better burning / fuels easier to burn OR Combust more easily OR Improves combustion ALLOW Reverse argument for straight-chain hydrocarbons IGNORE References to:	'Ignition less likely' (0)	1 1

(Total for Question 8 = 8 marks)

Question Number	Acceptable Answers	Reject	Mark
9(a)	(Enthalpy/energy change when) one mole of a compound / one mole of a substance IGNORE Statements such as "energy released" or "energy required" here (1)		3
	is formed from its elements (in their standard states, under standard conditions) (1)	'is formed from its gaseous elements'	
	(Standard temperature is) 298 K / 25°C ALLOW "K'		
	IGNORE References to room temperature (Standard pressure is) 1 atm / 101 kPa / 100 kPa (1)		

Question Number	Acceptable Answers	Reject	Mark
9(b)	6C(s, graphite) + $7H_2(g) \rightarrow C_6H_{14}(I)$ ALLOW 6C(s) / 6C(graphite)		2
	Species and balancing correct (1) State symbols correct (1) State symbols mark is dependent on correct species but allow this mark if 14H used instead of 7H ₂		
	NOTE $C_6H_{14}(I) \rightarrow 6C(s, graphite) + 7H_2(g)$ scores (1)		

Question	Acceptable Answers	Reject	Mark
Number			
9(c)	$ \begin{array}{c cccc} \hline C(s) + 2H_2(g) & \rightarrow & CH_4(g) \\ \hline (+2O_2(g)) & & & & (+2O_2(g)) \end{array} $		3
	$CO_2(\mathbf{g}) + 2H_2O(\mathbf{I})$		
	First mark: Both arrows point downwards (1)		
	Second mark: $CO_2(g) + 2H_2O(I)$ (1)	2 H ₂ O(g)	
	Third mark: $((1 \times -394) + (2 \times -286) - (1 \times -890) =)$ -76 (kJ mol ⁻¹) No TE from cycle arrows	If incorrect units with a final answer, no 3 rd mark	
	(1)	and the state of t	

Question Number	Acceptable Answers	Reject	Mark
9(d)(i)	$(+1652 \div 4 =) (+)413 (kJ mol^{-1})$	- 413	1

Question Number	Acceptable Answers	Reject	Mark
9(d)(ii)	st mark:		2
	(+2825 — 6 x answer to (d)(i))		
	ALLOW TE only from a positive value given		
	as answer to (d)(i)		
	(1)		
	Second mark: = (+)347 (kJ mol ⁻¹)		
	Second mark is CQ on first mark (1)		
	Correct answer with or without		
	working scores (2)		
	NOTE		
	-347 (kJ mol ⁻¹) scores (1)		

(Total for Question 9 = 11 marks)