Alkanes: Fuels & Pollution

Question Paper

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	The Core Principles of Chemistry
Sub Topic	Alkanes: Fuels & Pollution
Booklet	Question Paper

Time Allowed: 47 minutes

Score: /39

Percentage: /100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	An exa	ample of an equation to illustrate the cracking of an alkane from crude oil is
		$C_{15}H_{32}$ \rightarrow $2C_{2}H_{4}$ + $C_{3}H_{6}$ + $C_{8}H_{18}$
		pentadecane ethene propene octane
	Mo	plar masses/g mol $^{-1}$ 28 42 114
	(a) Wł	nat is the atom economy for this reaction in terms of production of alkenes?
	Us	e the expression
		Atom economy = $\frac{\text{Total mass of desired product(s)}}{\text{Total mass of all products}} \times 100\%$
	⊠ A	(1) 26%
	⊠ B	33%
	_	38%
		46%
	(b) Th	e chemical industry uses cracking in the processing of crude oil because (1)
	⊠ A	fractional distillation is too slow and expensive.
	\mathbb{Z} B	crude oil contains insufficient quantities of desired compounds.
	⊠ C	reforming requires a catalyst.
	⊠ D	cracking separates crude oil components.
_		(Total for Question 1 = 2 marks)
2	Scientis	ts are developing alternatives to fossil fuels.
	Which	of the following is not a result of carbon dioxide emissions?
	⊠ A	The increase in global warming.
	⊠ B	The melting of the ice caps.
	⊠ C	The increase in pH of the oceans.
	⋈ D	The rise in sea level.
		(Total for Question 2 = 1 mark)

	3 Which of the following fuels, when burned, would make no significant contribution to climate change?						
	X	A	Hydrogen				
	X	В	Methane				
	X	C	Petrol				
	X	D	Coal				
			(Total for Question 3 = 1 mark)				
			ion to water, which of the following could be formed during the incomplete ustion of a hydrocarbon?				
	X	A	Carbon, carbon monoxide and hydrogen				
■ B Carbon and hydrogen							
	☑ C Carbon monoxide and hydrogen						
	☑ D Carbon and carbon monoxide						
			(Total for Question 4 = 1 mark)				
			of the following statements correctly describes an environmental problem I by the burning of hydrocarbon fuels?				
	X	A	The carbon dioxide produced is toxic and kills plants.				
	X	В	The smoke produced obscures sunlight and leads to global warming.				
The water produced results in a damaging increase in rainfall.							
	X	D	The carbon dioxide produced traps heat radiated from the Earth and leads to global warming.				
			(Total for Question 5 = 1 mark)				

[Molar masses / g mol⁻¹: $CO_2 = 44$; $H_2O = 18$]

Which of the following is a possible formula of the unknown hydrocarbon?

- A CH₄
- C₂H₆
- □ C₆H₆

(Total for Question 6 = 1 mark)

- **7** A propellant for a rocket consists of a fuel, kerosene, and an oxidizer, liquid oxygen.
 - (a) The formulae of some hydrocarbons present in kerosene are shown in the table below.

Hydrocarbon	Formula
A	
В	CH ₃ (CH ₂) ₁₀ CH ₃
С	
D	
E	

(i) Name the homologous series to which the compounds **A**, **B**, **C** and **E** belong.

(1)

(ii) Name the compound A .	(1)
(iii) Explain the term structural isomers , by reference to two molecules selected from the table in part (a).	(3)
(iv) Give the molecular formula of the compound D .	(2)

(b) In the petrochemical industry, other fuels are obtained by the cracking and reforming of kerosene. 	
	Using appropriate letters, ${\bf A}$ to ${\bf D}$, identify a molecule listed in the table that be formed from ${\bf E}$ by	could
	(i) cracking alone	(4)
		(1)
	(ii) cracking and then reforming	(1)
		(1)
(c) Suggest how engine performance is improved by using a fuel containing the	ne
	molecule that you have identified in (b)(ii).	(1)
(d) The energy density of a fuel is defined as the energy produced per kilogra	m of fuel.
	Calculate the energy density of dodecane, $C_{12}H_{26}$, in kJ kg $^{-1}$. Give your answe two significant figures.	er to
	The enthalpy change of combustion of dodecane is $-8086 \text{ kJ mol}^{-1}$.	
	[Molar mass: $C_{12}H_{26} = 170 \text{ g mol}^{-1}$]	(2)
		(3)
	energy density =	kJ kg-

(Total for Question 7 = 13 marks)

8 Crude oil is a source of alkanes.					
(a) Name the process by which the hydrocarbons in crude oil are separated.	1)				
(b) The alkane ${\bf X}$ is composed of straight-chain molecules, each with nine carbon atoms.					
(i) Give the molecular formula of \mathbf{X} .	1)				
(ii) Y is a branched-chain isomer of X . Y has eight carbon atoms in a straight-chain with one methyl group as a side-cha	ain.				
Draw the skeletal formula of one possible structure for Y .					
Give the name of the structure that you have drawn.	2)				
Skeletal formula:	2)				
Name:					

(Total for Question 8 = 8 mai	·ks)
cyclic hydrocarbons.	(1)
(ii) Suggest why the petroleum industry processes straight-chain alkanes to form	
	(1)
(i) Complete the skeletal formula of one of the possible cyclic hydrocarbons.	
When octane is processed, each molecule of octane produces one molecule of a cyclic hydrocarbon, C_8H_{12} , and three molecules of hydrogen as the only products.	
(d) In the petroleum industry, some straight-chain alkanes are processed to form cyclic hydrocarbons.	
	(1)
(ii) In practice, cracking pentadecane forms a large number of products. Suggest why this is so.	
	(1)
one molecule of ethene and a molecule of one other product. State symbols are not required.	
(i) Give an equation to show the cracking of one molecule of $C_{15}H_{32}$ to form	

9	Alkanes are used as fuels in homes and in industry. It is, therefore, important that the enthalpy changes involving alkanes are known.		
	(a) Define the term standard enthalpy change of formation of a compound.		
	Give the conditions of temperature and pressure that are used when measuring a standard enthalpy change.		
		(3)	
De	efinition		
•••••			
St	andard temperature is		
St	andard pressure is		
	(b) Write the equation, with state symbols, that accompanies the enthalpy change of formation of hexane, $C_6H_{14}(I)$.		
	6.14	(2)	

(c) Enthalpy changes can be calculated using enthalpy changes of combustion. Values for some standard enthalpy changes of combustion are shown in the table below.

Substance	$\Delta H_{\rm c}^{\oplus}$ / kJ mol ⁻¹	
C(s)	-394	
H ₂ (g)	-286	
CH ₄ (g)	-890	

Use these data to complete the Hess cycle below for the reaction and then calculate the standard enthalpy change for the reaction, in kJ mol⁻¹.

C(s)	₂ (g)	\rightarrow	CH ₄ (g)	
				(3)

Space for working

standard enthalpy change for the reaction = \dots kJ mol⁻¹

(d)	The equations for the combination of gaseous carbon atoms and gaseous
	hydrogen atoms to form methane, CH ₄ , and ethane, C ₂ H ₆ , are shown below.

C(g) + 4H(g)
$$\rightarrow$$
 CH₄(g) $\Delta H = -1652 \text{ kJ mol}^{-1}$

$$\Delta H = -1652 \text{ kJ mol}^{-1}$$

$$2C(g) + 6H(g) \rightarrow C_2H_6(g)$$
 $\Delta H = -2825 \text{ kJ mol}^{-1}$

$$\Delta H = -2825 \text{ kJ mol}^{-1}$$

Use these data to calculate

(i) the mean bond enthalpy of a C—H bond in methane, in kJ mol⁻¹.

(1)

(ii) the bond enthalpy of a C—C bond, in kJ mol⁻¹, clearly showing your working.

(2)

(Total for Question 9 = 11 marks)