Alkanes: Formulae, Reactions & Structure ## **Question Paper 1** | Level | International A Level | |------------|--| | Subject | Chemistry | | Exam Board | Edexcel | | Topic | The Core Principles of Chemistry | | Sub Topic | Alkanes: Formulae, Reactions & Structure | | Booklet | Question Paper 1 | Time Allowed: 59 minutes Score: /49 Percentage: /100 #### **Grade Boundaries:** | A* | Α | В | С | D | E | U | |------|--------|-----|-------|-------|-----|------| | >85% | '77.5% | 70% | 62.5% | 57.5% | 45% | <45% | 1 The following molecules are alkenes. (a) Which molecule has a geometric isomer? (1) - \square **B** Q - (b) Which molecule would produce 2-bromohexane as the **major** product on addition of hydrogen bromide? (1) - \square **B** Q - (c) Which molecule has 14 hydrogen atoms? (1) - A P - \boxtimes **B** Q - D S (Total for Question 1 = 3 marks) 2 What is the systematic name for the following molecule? $$\begin{array}{c} \mathsf{CH_3} \\ | \\ \mathsf{CH_3} \\ \mathsf{--CH} \\ \mathsf{--CH_2} \\ | \\ | \\ \mathsf{C_2H_5} \end{array}$$ - ☑ A 2,4-diethyl-2-methylpentane - ☑ B 2,4-diethyl-4-methylpentane - ☑ C 3,3,5-trimethylheptane - ☑ D 3,5,5-trimethylheptane (Total for Question 2 = 1 mark) **3** Which of the following is a step in the propagation stage of the chlorination of methane? - \square A $Cl_2 \rightarrow Cl^{\bullet} + Cl^{\bullet}$ - \boxtimes **B** CH₃• + Cl• \rightarrow CH₃Cl - \square C $CH_3^{\bullet} + CI_2 \rightarrow CH_3CI + CI^{\bullet}$ - \square **D** CH₄ + Cl• \rightarrow CH₃Cl + H• (Total for Question 3 = 1 mark) 4 How many structural isomers have the molecular formula C_6H_{14} ? - A Four - **B** Five - C Six - D Seven (Total for Question 4 = 1 mark) **5** (a) Which of the following represents the equation for the reaction between ethane and chlorine in the presence of UV radiation? (1) - \square A $C_2H_6 + Cl_2 \rightarrow C_2H_4Cl_2 + H_2$ - \boxtimes **B** $C_2H_6 + CI_2 \rightarrow C_2H_5CI + HCI$ - \square **C** C_2H_6 + $Cl_2 \rightarrow 2CH_3CI$ - \square **D** $C_2H_6 + 2CI_2 \rightarrow 2CH_3CI + 2HCI$ - (b) The UV radiation initially causes the formation of (1) - B Cl⁺ ions. - C Cl• free radicals. - \square **D** C_2H_5 free radicals. - (c) Once it has started, the reaction can proceed for a time without UV light because (1) - ☑ A a chain reaction is occurring. - **B** initiation is occurring. - ☑ C a substitution reaction is occurring. - D termination steps cannot occur without UV light. (Total for Question 5 = 3 marks) 6 Which of the following is the systematic name for the hydrocarbon shown below? - A 5-ethyl-4-methylhexane - B 2-ethyl-3-methylhexane - **D** 3,4-dimethylheptane (Total for Question 6 = 1 mark) | 7 A | lka | anes react with halogens in the presence of ultraviolet (UV) light. | | |------------|-----|--|-----| | (| (a) | Write the equation for the overall reaction of bromine with methane to form bromomethane. State symbols are not required. | (1) | | (| (b) | Propane reacts with chlorine to produce C_3H_7CI . There are two possible isomers with this molecular formula. | | | | | Draw the skeletal formulae of these two isomers and give their systematic names. | (4) | | | | | | | | | Name: Name: | | | | (c) | Ethane reacts with chlorine in UV light by a free radical substitution mechanism involving a number of steps. (i) Explain why ethane does not react with electrophiles. | (1) | | | | (ii) Explain why ethane undergoes substitution and not addition reactions. | (1) | | | | | | | (iii) The first step of the reaction of chlorine with ethane in UV light involves homolytic fission. | | |--|----------| | Write the equation for this fission and state the name of this reaction step |). | | Curly half-arrows are not required. | (2) | | Equation: | (2) | | Name of reaction step | | | (iv) The ethyl free radical is an intermediate in the propagation stage of the re
Draw the dot-and-cross diagram of this free radical. | eaction. | | Use dots (•) for the hydrogen electrons, crosses (x) for the electrons of one the carbon atoms and asterisks (*) for the electrons of the other carbon at Show only outer shell electrons. | tom. | | | (2) | | | | | | | | | | | | | | (v) What change to the reaction mixture of ethane and chlorine would increat the production of polychlorinated alkanes such as 1,1-dichloroethane and 1,2-dichloroethane? | | | | (1) | | | | | (Total for Question 7 = 12 | marks) | | | | - 8 The reaction of liquid bromine is a standard test for alkenes. - (a) (i) Complete the equation for the reaction of cyclohexene with liquid bromine, using a skeletal formula. $$+ Br_2 \rightarrow$$ (ii) What colour change would you see when this reaction occurs? (1) From to (b) Gaseous but-1-ene is another alkene that readily reacts with liquid bromine. Using molecular formulae, the equation for the reaction is $$C_4H_8 + Br_2 \rightarrow C_4H_8Br_2$$ (i) Using the bond enthalpy values in the table, calculate the enthalpy change for this reaction. (2) | Bond | Bond enthalpy
/kJ mol ⁻¹ | |-------|--| | С—Н | 413 | | c—c | 347 | | C=C | 612 | | C—Br | 290 | | Br—Br | 193 | | bor
Do | ve one reason why the value calculated for the reaction in part (b)(i) using and enthalpies is different from the true value. not consider experimental error, mean bond enthalpy values or n-standard conditions. | (1) | |-----------|--|-----| | | | | | | ing appropriate curly arrows, write the mechanism of the reaction between
t-1-ene and bromine. | (3) | | | | | | | | | | | entify, by name or by displayed formula, the product formed when omine water is added to but-1-ene. | (1) | | | | | | | (Total for Question 8 = 9 mark | :s) | | 9 | Con | npou | and X has the molecular formula C_5H_{12} . | | |---|-----|-------------|---|-----| | | (a) | Dra | aw the displayed formulae of the three structural isomers of C_5H_{12} . | (2) | | | | | | (-) | (b) | | H_{12} reacts with chlorine to form a mixture of products. | | | | (b) | | H ₁₂ reacts with chlorine to form a mixture of products. Classify the type and mechanism of this reaction. | (2) | | | (b) | | | (2) | | | (b) | (i)
(ii) | | | | | (b) | (i)
(ii) | Classify the type and mechanism of this reaction. Write the equations for the two propagation steps for this mechanism. Use the | | | | (b) | (i)
(ii) | Classify the type and mechanism of this reaction. Write the equations for the two propagation steps for this mechanism. Use the | | | | (b) | (i)
(ii) | Classify the type and mechanism of this reaction. Write the equations for the two propagation steps for this mechanism. Use the | | | | (b) | (i)
(ii) | Classify the type and mechanism of this reaction. Write the equations for the two propagation steps for this mechanism. Use the | | | | (b) | (i)
(ii) | Classify the type and mechanism of this reaction. Write the equations for the two propagation steps for this mechanism. Use the molecular formula, C_5H_{12} , in your first equation. Curly arrows are not required. | | | | (b) | (i)
(ii) | Classify the type and mechanism of this reaction. Write the equations for the two propagation steps for this mechanism. Use the | | | (c) | An experiment was carried out to determine the enthalpy change of combustion of compound ${\bf X}$, C_5H_{12} . | | |-----|--|-----| | | 100.0 g of water was heated by burning 0.144 g of compound X . | | | | The temperature rise of the water was 14.5 °C. | | | | (i) Calculate the energy transferred, in kJ , in this experiment. | | | | Use the equation | | | | heat energy produced (J) = mass of water \times 4.18 \times temperature change | (1) | | | | | | | | | | | energy transferred = | kJ | | | (ii) Calculate the number of moles of compound ${\bf X}$ used in this experiment. | (1) | | | | | | | | | | | moles of X = | | | | (iii) Calculate the enthalpy change of combustion of compound X . Include a sign and units in your answer. | | | | and drifts in your answer. | (2) | | | | | | | | | | | | | | | | | | | enthalpy change of combustion = | | | | | | | (iv) The Data Book values for the enthalpy changes of combustion of the three structural isomers with the formula C_5H_{12} are: | | |--|-----| | −3509.1 kJ mol ⁻¹ | | | −3503.4 kJ mol ⁻¹ | | | −3492.5 kJ mol ⁻¹ | | | The experimental value calculated in (c)(iii) is very different from these values. Give two reasons, other than heat loss, for this large difference. | (2) | | | | | | | | | | | | | | | | | (v) Explain why it is not possible to deduce which of the isomers is compound X by comparing this experimental value and the Data Book values. | | | | (1) | | | | | | | | | | | | | | | | *(d) Complete the Hess cycle and use it to calculate the enthalpy change of combustion of C_5H_{12} from the following data. Show all of your working. | Standard enthalpy change of formation of C ₅ H ₁₂ (I) | −173.2 kJ mol ⁻¹ | |---|-----------------------------| | Standard enthalpy change of combustion of H ₂ (g) | –285.8 kJ mol ⁻¹ | | Standard enthalpy change of combustion of carbon(s, graphite) | −393.5 kJ mol ⁻¹ | (4) $$C_5H_{12}(I) + 8O_2(g)$$ \longrightarrow $5CO_2(g) + 6H_2O(I)$+