## Alkenes \& Polymers

## Mark Scheme

| Level | International A Level |
| :--- | :--- |
| Subject | Chemistry |
| Exam Board | Edexcel |
| Topic | The Core Principles of Chemistry |
| Sub Topic | Alkenes \& Polymers |
| Booklet | Mark Scheme |


| Time Allowed: | 84 minutes |
| :--- | :--- |
| Score: | $/ 70$ |
| Percentage: | $/ 100$ |

Grade Boundaries:

| A* | A | B | C | D | E | U |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $>85 \%$ | $77.5 \%$ | $70 \%$ | $62.5 \%$ | $57.5 \%$ | $45 \%$ | $<45 \%$ |

## www.igexams.com

| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | A |  | 1 |
|  | Incorrect Answers: <br> B - The methyl groups are bonded to <br> the same carbon <br> C - The double bonds are still present <br> D- The double bond has moved and <br> results in pentavalent carbons |  |  |


| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{2}$ | B |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{3}$ | A |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{4}$ | A |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{5}$ | C | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{6}$ | A | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{7}$ | B | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{8}$ | C | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{9}$ | A | $\mathbf{1}$ |

## www.igexams.com

| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 0 ( a ) ( i )}$ | $\mathrm{C}_{7} \mathrm{H}_{14}$ | $\mathrm{C}^{7} \mathrm{H}^{14}$ | $\mathbf{1}$ |
|  | ALLOW $\mathrm{H}_{14} \mathrm{C}_{7}$ <br> IGNORE any working/ names |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 0 ( a ) ( i i )}$ | rst mark <br> Restricted/barrier to rotation (around C=C/ pi <br> bond) <br> ALLOW no rotation (around C=C/ pi bond/ the <br> double bond) <br> (1) | the molecule/ <br> hydrocarbon <br> cannot rotate | $\mathbf{2}$ |
|  | IGNORE <br> Just 'groups/atoms attached to C=C are in <br> fixed positions <br> Second mark <br> (Two) different groups/atoms (with different <br> priorities/masses) on both/each of the carbon <br> atoms (of C=C) <br> OR <br> (Two) different groups on either side of C=C <br> OR <br> There are three different groups/atoms around <br> the C=C bond | compounds/ <br> molecules/ <br> branches <br> for groups |  |
| ALLOW two clear diagrams/structures showing <br> the two different groups in each isomer <br> (1) |  |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 0 ( b ) ( i )}$ | bromine water/ aqueous bromine $/ \mathrm{Br}_{2}(\mathrm{aq})$ | Just <br> 'bromine/ $\mathrm{Br}_{2}{ }^{\prime} /$ | $\mathbf{1}$ |
|  |  | $\mathrm{Br}_{2}(\mathrm{I}) / \mathrm{BrOH}$ |  |

## www.igexams.com

| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 10(b)(ii) | propane-1,2-diol <br> ALLOW <br> propan-1,2-diol/ 1,2-propanediol/ 1,2propandiol <br> IGNORE missing/ additional hyphens in name <br> OR <br> ALLOW <br> Structural formula, skeletal formula or a combination of these <br> IGNORE <br> Molecular formula/ $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{2}$ | 1,2-dipropanol <br> Correct name with incorrect formula or vice versa $\begin{aligned} & \mathrm{O}-\mathrm{H}-\mathrm{C} . \\ & \mathrm{OH}-\mathrm{C} . . \\ & \mathrm{OHC} . . \\ & \ldots \mathrm{C}-\mathrm{H}-\mathrm{O} \\ & \ldots \mathrm{C}-\mathrm{HO} \\ & \ldots \mathrm{CHO} \end{aligned}$ | 1 |
| Question Number | Acceptable Answers | Reject | Mark |
| 10(b)(iii) | (From) purple/ pink (to) colourless Both colours correct for the mark |  | 1 |

## www.igexams.com

| Question | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 10(b)(iv) | Correct dipole on HBr <br> Curly arrow from $\mathrm{C}=\mathrm{C}$ to H of HBr and curly arrow from $\mathrm{H}-\mathrm{Br}$ bond to Br <br> Correct intermediate with + charge <br> (At least one) lone pair on $\mathrm{Br}^{-}$and curly arrow from $\mathrm{Br}^{-}$to $\mathrm{C}^{+}$ <br> ALLOW curly arrow from anywhere on Br , including the - sign <br> If mechanisms are given for 1-bromopropane and 2-bromopropane, ignore the mechanism for 1bromopropane <br> If final product is 1-bromopropane only, mechanism can score marks 1,2 and 4 | Clearly half-headed arrows once only <br> Missing H on structures once only <br> $\delta+$ <br> $\mathrm{Br}^{8-}$ | 4 |

## www.igexams.com

| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 0 ( c )}$ |  |  |  |
|  | IGNORE brackets and n/ 2 |  |  |
| IGNORE bond angles and bond lengths |  |  |  |
| IGNORE working before final structure |  |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 0 ( d ) ( i )}$ | Correct answer with no working scores the <br> mark | $82.4(\%)$ <br> (incorrect Mrs of <br> 84 and 102 used | $\mathbf{1}$ |
|  | (percentage atom economy) $=\frac{82.0 \times 100}{100.0}$ | $80(1 \mathrm{SF})$ |  |
|  | $=82(.0)(\%)$ |  |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 10(d)(ii) | Correct answer with no working scores both marks <br> First mark <br> moles of cyclohexanol $\begin{equation*} =\frac{10.2}{100.0}=0.102 \tag{1} \end{equation*}$ <br> ALLOW TE on incorrect $M_{r}$ in (i) <br> Second mark <br> EITHER <br> moles of cyclohexene produced $=\frac{6.15}{82.0}=0.075$ $\begin{align*} & \% \text { yield }=\frac{0.075}{0.102} \times 100 \\ & =73.529 / 73.53 / 73.5 / 74(\%) \tag{1} \end{align*}$ <br> ALLOW TE on incorrect mol of cyclohexanol and cyclohexene or incorrect $\mathrm{M}_{\mathrm{r}}$ in (i) <br> OR <br> theoretical mass of cyclohexene $\begin{align*} &=0.102 \times 82.0=8.364 \mathrm{~g} \\ & \% \text { yield }=\frac{6.15}{8.364} \times 100 \\ &=73.529 / 73.53 / 73.5 / 74(\%) \end{align*}$ <br> ALLOW TE on mol of cyclohexanol, mass of cyclohexene or incorrect $M_{r}$ <br> IGNORE SF except 1 SF | $\begin{aligned} & \frac{6.15}{10.2} \times 100 \\ & =60.3 \% \\ & \text { scores } \mathbf{( 0 )} \end{aligned}$ <br> 70 for the second mark | 2 |

## www.igexams.com

| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 1 ( a )}$ | $\mathrm{C}_{n} \mathrm{H}_{2 \mathrm{n}}$ |  | $\mathbf{1}$ |
|  | ALLOW <br> Letters other than n |  |  |

ALLOW: (partially) displayed or skeletal formulae throughout Q11(b)
IGNORE: additional incorrect non-organic products

| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 1 ( b ) ( \mathbf { i ) }}$ | $\mathrm{CH}_{3} \mathrm{CH}_{3}$ | $\mathrm{C}_{2} \mathrm{H}_{6}$ | $\mathbf{1}$ |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 1 ( b ) ( i i ) ~}$ | $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl} / \mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$ | $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$ | $\mathbf{1}$ |

ONLY PENALISE ONCE ONLY in (b)(iii) \& (b)(iv) THE CONNECTIVITY BETWEEN $\mathbf{C}$ and OH if CLEARLY a $\mathbf{C}$ to $\mathbf{H}$ covalent bond has been drawn

| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :---: | :--- | :---: |
| $\mathbf{1 1 ( b ) ( i i i ) ~}$ | $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{OH}$ | $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2} /$ <br> $\mathbf{O H C H}_{2} \mathrm{CH}_{2} \mathrm{OH}$ | $\mathbf{1}$ |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 1 ( b ) ( i v ) ~}$ | $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{Br} / \mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{Br}$ | $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{Br} /$ <br> $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OBr} /$ <br> $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$ | $\mathbf{1}$ |

## www.igexams.com

PENALISE USE OF Br instead of CI once only in parts (c)(i) \&
(c)(ii)

PENALISE missing $\mathbf{H}$ atoms from displayed formulae once only in parts (c)(i) \& (c)(ii)

| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 11(c)(i) |  <br> (Major product) <br> Both DISPLAYED structures, with all bonds and atoms shown but in the wrong boxes scores (1) <br> PENALISE <br> $\mathrm{CH}_{3}$ not fully displayed ONCE only So |  | 2 |

## www.igexams.com

| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 11(c)(ii) | attack of chloride ion (1) <br> 1st mark: <br> Curly arrow from $\mathrm{C}=\mathrm{C}$ to H (in $\mathrm{H}-\mathrm{Cl}$ ) AND curly arrow from bond in $\mathrm{H}-\mathrm{Cl}$ to the Cl (dipole not reqd) Curly arrows must start from the bonds NOT the atoms | Full + and charges on HCl <br> Incorrect <br> polarity <br> on HCl | 3 |
|  | 2nd mark: <br> Structure of correct secondary carbocation | Extra / <br> spare <br> bond dangling from the C+ carbon |  |
|  | 3rd mark: <br> Curly arrow from anywhere on the chloride ion (including the minus sign) towards the $\mathrm{C}+$ on the carbocation <br> NOTE: The chloride ion must have a full negative charge, but the lone pair of electrons on the $\mathrm{Cl}^{-}$ need not be shown <br> ALLOW: TE on major product given in (c)(i) <br> Skeletal formulae can be used <br> Mark the three points independently | $\delta$ - on chloride ion instead of $\mathrm{Cl}^{-}$ |  |

## www.igexams.com

| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 11(d)(i) |  <br> TWO ' $n$ ' in the equation and a correct formula (molecular or structural) for propene on the left-hand side of the equation <br> One correct repeating unit, with the methyl branch shown <br> ALLOW <br> $\mathrm{CH}_{3}$ fully displayed or just as $\mathrm{CH}_{3}$ <br> BOTH continuation bonds (with or without bracket shown) <br> If $\mathrm{C}=\mathrm{C}$ bond left in polymer on righthand side, then max (1) <br> Mark the three points independently |  | 3 |

## www.igexams.com

| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 1 ( d ) ( i i )}$ | Non-biodegradable <br>  <br>  <br>  <br>  <br>  <br>  <br> IGNORE <br> References to toxicity of <br> poly(propene) / flammability <br> IGNORE <br> Litter / pollution / waste of resources <br> / costs <br> ALLOW <br> People are reluctant to recycle <br> OR <br> Harmful to marine life / harmful to <br> wildlife <br> OR <br> References to 'landfill' <br> OR <br> References to 'incineration' producing <br> toxic fumes/toxic gases / CO $/$ <br> Greenhouse gases <br> OR <br> References to use of energy/fuel <br> used in transport (of waste) <br> OR <br> It takes a long time to degrade |  |  |

## www.igexams.com

| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 11(e)(i) | Both arrows in the correct direction <br> AND <br> $3 \mathrm{CO}_{2}$ and $3 \mathrm{H}_{2} \mathrm{O}$ in lowest box <br> IGNORE state symbols, even if incorrect IGNORE extra $\mathrm{O}_{2}$ molecules in box or alongside arrows |  | 1 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 11(e)(ii) | $\begin{aligned} & \mathbf{1}^{\text {st }} \text { mark } \\ & (-394 \times 3)+(-286 \times 3) \end{aligned}$ <br> OR $\begin{equation*} =-2040\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$ <br> 2nd mark: $\begin{align*} \Delta H_{f} & =-2040-(-2058) \\ & =(+) 18\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{align*}$ <br> NOTE: <br> The following answers score (1) <br> mark <br> with or without working $\begin{aligned} & -18\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ & (+) 1378\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ & (+) 806\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ & (+) 590\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ & -4098\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$ <br> IGNORE units even if incorrect |  | 2 |

(Total for Question 11 = 17 marks

## www.igexams.com

| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 12(a)(i) | Curly arrow from double bond towards iodine atom AND curly arrow from the $\mathrm{I}-\mathrm{Cl}$ bond to the chlorine atom <br> Carbocation intermediate <br> Curly arrow from the chloride ion to the correct $\mathrm{C}^{+}$in the intermediate <br> NOTE <br> Curly arrow can originate from anywhere on the $\mathrm{Cl}^{-}$ion in the final step. <br> Do not have to have a lone pair of $\mathrm{e}^{-}$on the $\mathrm{Cl}^{-}$ion | $\delta^{+} \text {for }+$ $\delta^{-} \text {for - on } \mathrm{Cl}^{-}$ | 3 |

## www.igexams.com

| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 2 ( a ) ( i i ) ~}$ | Electrophilic | (1) |  |
| Addition | (1) |  | $\mathbf{2}$ |
|  | ALLOW answers in either order |  |  |
|  | IGNORE <br> 'heterolytic' |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 2 ( a ) ( i i i ) ~}$ | ALLOW |  |  |
|  | Correct structural OR displayed OR <br> skeletal formula OR mixture of these (so <br> Iong as unambiguous) <br> Eg CH2ClCHICH |  |  |
| IGNORE <br> Any name given, even if incorrect | $\mathbf{1}$ |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 2 ( b ) ( i )}$ | Ultraviolet / UV <br> OR <br> Sun (light) <br> OR <br> Light <br> ALLOW <br> High temperature / $300^{\circ} \mathrm{C}$ (minimum) | Mention of a <br> 'catalyst' | $\mathbf{1}$ |
|  | IGNORE <br> Just heat / just radiation / rays |  |  |

## www.igexams.com

| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 12(b)*(ii) | First mark: |  | 7 |
|  | (Free) radical substitution (1) |  |  |
|  | Second mark: |  |  |
|  | Homolytic (fission) (1) | Heterolytic |  |
|  | Third mark: |  |  |
|  | Initiation |  |  |
|  | AND |  |  |
|  | $\mathrm{ICl} \rightarrow \mathrm{I} \bullet+\mathrm{Cl} \bullet$ (1) |  |  |
|  | BOTH needed for the 3rd mark |  |  |
|  | Fourth mark: |  |  |
|  | Propagation (1) |  |  |
|  | Fifth and sixth marks: |  |  |
|  | $\begin{equation*} \mathrm{CH}_{4}+\mathrm{Cl} \bullet \rightarrow \mathrm{CH}_{3} \bullet+\mathrm{HCl} \tag{1} \end{equation*}$ | $\mathrm{H} \bullet$ (the fifth and |  |
|  | $\begin{equation*} \mathrm{CH}_{3} \bullet+\mathrm{ICl} \rightarrow \mathrm{CH}_{3} \mathrm{I}+\mathrm{Cl} \bullet \tag{1} \end{equation*}$ | cannot be awarded if $\mathrm{H} \bullet$ |  |
|  | IGNORE $\mathrm{CH}_{4}+\mathrm{I} \bullet \rightarrow \mathrm{CH}_{3} \bullet+\mathrm{HI}$ | appears in either propagation step) |  |
|  | $\mathrm{CH}_{3} \bullet+\mathrm{ICl} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{I} \bullet$ |  |  |
|  | Seventh mark: $\mathrm{CH}_{3} \bullet+\mathrm{I} \bullet \rightarrow \mathrm{CH}_{3} \mathrm{I}$ |  |  |
|  | OR |  |  |
|  | $\mathrm{Cl} \bullet+\mathrm{Cl} \bullet \rightarrow \mathrm{Cl}_{2}$ |  |  |
|  | $\mathrm{CH}_{3} \bullet+\mathrm{Cl} \bullet \rightarrow \mathrm{CH}_{3} \mathrm{Cl}$ |  |  |
|  | OR |  |  |
|  | $\begin{aligned} & \mathrm{CH}_{3} \bullet+\mathrm{CH}_{3} \bullet \rightarrow \mathrm{C}_{2} \mathrm{H}_{6} \\ & \mathrm{OR} \end{aligned}$ |  |  |
|  | $\mathrm{I} \bullet+\mathrm{Cl} \bullet \rightarrow \mathrm{ICl}$ |  |  |
|  | $\begin{align*} & \text { ALLOW } \\ & \mathrm{I} \bullet+\mathrm{I} \bullet \rightarrow \mathrm{I}_{2} \tag{1} \end{align*}$ |  |  |
|  | IGNORE |  |  |
|  | Any INCORRECT termination step(s) IGNORE |  |  |
|  | State symbols, even if incorrect |  |  |
|  | Curly arrows / half curly arrows, even if incorrect |  |  |

(Total for Question 12 = 14 marks)

## www.igexams.com

| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 3 ( a )}$ | Any ONE of : <br> Contains a carbon-carbon double bond / <br> C=C <br> OR <br> Contains a carbon-carbon triple bond <br> OR <br> Does not contain the maximum number of <br> hydrogen atoms/hydrogen(s) <br> OR <br> Can undergo addition reactions | Just 'carbon double <br> bond' / <br> Just 'contains a <br> double bond' / <br> 'contains a double <br> bond between <br> carbon <br> molecules'/'contains <br> more than one <br> carbon-carbon <br> double bond' |  |

## www.igexams.com

| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 13(b)(i) |   <br> Z-but-2-ene <br> E-but-2-ene <br> IGNORE references to cis-trans isomerism <br> BOTH correct structures drawn <br> E-isomer and Z-isomer correctly identified <br> but-2-ene written for each isomer <br> IGNORE missing hyphens <br> Allow angles shown as right angles <br> $\mathrm{CH}_{3}$ does not have to be displayed in full <br> Allow for E : <br> OR <br> Allow for Z: | If propene is drawn (0) overal | 3 |

## www.igexams.com

| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 13(b)(ii) | From purple/ (pale) pink to colourless Both needed Accept to brown | Clear for colourless/violet for purple | 1 |
| Question Number | Acceptable Answers | Reject | Mark |
| 13(b)(iii) |  <br> OR <br> Ignore bond angles and orientation |  | 1 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| 13(b)(iv) | Breaking a C-C bond/ <br> breaking the molecule into a smaller <br> molecule/ <br> breaking the hydrocarbon into a smaller <br> hydrocarbon | Any mention of <br> 'breaking down into <br> fractions' / forms <br> branched <br> molecules / <br> splitting of crude <br> oil (into smaller <br> molecules) | ALLOW <br> Any mention of 'breaking' or 'splitting' <br> (molecule or compound or hydrocarbon) or <br> 'large to small' |
| IGNORE <br> Just 'cracking to form an alkane and an <br> alkene' |  |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 3 ( b ) ( \mathbf { v } )}$ | $\mathrm{C}_{8} \mathrm{H}_{18} \rightarrow \mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{C}_{4} \mathrm{H}_{10}$ <br> $\mathbf{O R}$ <br> Equations with correct structural or <br> displayed formulae <br> IGNORE <br> State symbols, even if incorrect <br> Names, even if incorrect |  |  |

## www.igexams.com

| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 13(c) | Electrophilic (addition) (1) |  |  |
|  | IGNORE 'heterolytic' |  |  |
|  | Name of final product $=1,2$-dibromopropane <br> No TE on naming a product shown incorrectly in equation. |  |  |
|  |  |  |  |
|  | Both curly arrows in first step <br> The structure of the intermediate carbocation $\mathrm{CH}_{3} \mathrm{CH}^{+}-\mathrm{CH}_{2} \mathrm{Br}$ <br> Allow $\mathrm{CH}_{3} \mathrm{CHBr}-\mathrm{CH}_{2}{ }^{+}$as intermediate |  |  |
|  | Curly arrow from $\mathrm{Br}^{-}$to $\mathrm{C}^{+}$ <br> Partial ( $\delta+$ and $\delta-$ ) charges are not required Lone pair on bromide ion not required | If curly arrow from $\mathrm{Br}^{-}$to a $\mathrm{C}^{+}$ with a Br already attached to it | 5 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 3 ( d ) ( i )}$ | $100 \%$ as only one product / <br> $100 \%$ as no by product(s) / <br> $100 \%$ as addition reaction / formed) <br> $100 \%$ as no waste product (formed | Just "atom <br> economy is high" / <br> no mention of <br> $100 \%$ |  |

## www.igexams.com

| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 13(d)(ii) |  <br> $\mathrm{CH}_{3}$ groups may be on C2 and C4 OR C1 and C3 <br> IGNORE <br> brackets <br> IGNORE <br> ' $n$ ' <br> BOTH continuation bonds are essential | Just repeating unit / one repeating unit drawn with an ' $n$ ' or a '2' next to it | 1 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 13(d)(iii) | Not sustainable as poly(propene) not made <br> from a renewable resource / <br> Not sustainable as made from non- <br> renewable resource / not sustainable as <br> made from crude oil. <br> Not sustainable as crude oil is not <br> renewable/ <br> Not sustainable as crude oil finite resource |  |  |
| ALLOW <br> Is sustainable if linked to recycling <br> IGNORE <br> References to non-biodegradability / <br> long-lasting in use | $\mathbf{1}$ |  |  |

