Alkenes & Polymers

Mark Scheme

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Торіс	The Core Principles of Chemistry
Sub Topic	Alkenes & Polymers
Booklet	Mark Scheme

Time Allowed:	84 minutes
Score:	/70
Percentage:	/100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question Number	Correct Answer	Reject	Mark
1	A		1
	Incorrect Answers:		
	B – The methyl groups are bonded to		
	the same carbon		
	C - The double bonds are still present		
	D- The double bond has moved and		
	results in pentavalent carbons		

Question Number	Correct Answer	Reject	Mark
2	В		1

Question Number	Correct Answer	Reject	Mark
3	А		1

Question Number	Correct Answer	Reject	Mark
4	А		1

Question Number	Correct Answer	Mark
5	С	1

Question Number	Correct Answer	Mark
6	A	1

Question Number	Correct Answer	Mark
7	В	1

Question Number	Correct Answer	Mark
8	С	1

Question Number	Correct Answer	Mark
9	A	1

Question Number	Acceptable Answers	Reject	Mark
10 (a)(i)	C ₇ H ₁₄ ALLOW H ₁₄ C ₇	C ⁷ H ¹⁴	1
	IGNORE any working/ names		

Question Number	Acceptable Answers	Reject	Mark
10(a)(ii)	rst mark Restricted/barrier to rotation (around C=C/ pi bond) ALLOW no rotation (around C=C/ pi bond/ the double bond) (1) IGNORE Just 'groups/atoms attached to C=C are in fixed positions '	the molecule/ hydrocarbon cannot rotate	2
	Second mark (Two) different groups/atoms (with different priorities/masses) on both/each of the carbon atoms (of C=C) OR (Two) different groups on either side of C=C OR There are three different groups/atoms around the C=C bond ALLOW two clear diagrams/structures showing the two different groups in each isomer (1)	compounds/ molecules/ branches for groups 4 different groups/atoms	

Question Number	Acceptable Answers	Reject	Mark
10(b)(i)	bromine water/ aqueous bromine /Br ₂ (aq)	Just 'bromine/Br ₂ '/ Br ₂ (I)/ BrOH	1

Question Number	Acceptable Answers	Reject	Mark
10 (b)(ii)	propane-1,2-diol	1,2-dipropanol	1
	ALLOW propan-1,2-diol/ 1,2-propanediol/ 1,2- propandiol	Correct name with incorrect formula or vice versa	
	IGNORE missing/ additional hyphens in name		
	OR		
	н н н нссн он он н	О-н-с. ОН-С ОНС С-Н-О С-НО СНО	
	ALLOW Structural formula, skeletal formula or a combination of these		
	IGNORE Molecular formula/ C ₃ H ₈ O ₂		

Question	Acceptable Answers	Reject	Mark
Number			
10(b)(iii)	(From) purple/ pink (to) colourless		1
	Both colours correct for the mark		

Question	Acceptable Answers	Reject	Mark
10(b) (iv)	H = H = H = H = H = H = H = H = H = H =	Clearly half-headed arrows once only Missing H on structures once only	4
	Correct dipole on HBr (1)		
	Curly arrow from C=C to H of HBr and curly arrow from H-Br bond to Br (1)		
	Correct intermediate with + charge (1)	δ+	
	(At least one) lone pair on Br ⁻ and curly arrow from Br ⁻ to C ⁺ (1) ALLOW curly arrow from anywhere on Br, including	Br ^{ŏ−}	
	If mechanisms are given for 1-bromopropane and 2-bromopropane, ignore the mechanism for 1- bromopropane		
	If final product is 1-bromopropane only, mechanism can score marks 1, 2 and 4		

Question Number	Acceptable Answers	Reject	Mark
10 (c)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1
	ALLOW CH_3 groups above or below the chain		
	ALLOW fully displayed formula		
	IGNORE brackets and n/ 2		
	IGNORE bond angles and bond lengths		
	IGNORE working before final structure		

Question Number	Acceptable Answers	Reject	Mark
10 (d)(i)	Correct answer with no working scores the mark (percentage atom economy) = <u>82.0</u> x 100 100.0	82.4(%) (incorrect <i>M</i> _r s of 84 and 102 used 80 (1 SF)	1
	= 82(.0) (%)		

Question Number	Acceptable Answers	Reject	Mark
10 (d)(ii)	Correct answer with no working scores both marks First mark	<u>6.15</u> x 100 10.2 = 60.3% scores (0)	2
	moles of cyclohexanol = $\frac{10.2}{100.0}$ = 0.102		
	ALLOW TE on incorrect M_r in (i) (1)		
	Second mark EITHER moles of cyclohexene produced $= \frac{6.15}{82.0} = 0.075$	70 for the second mark	
	% yield = $\frac{0.075}{0.102}$ x 100 = 73.529/ 73.53/ 73.5/ 74 (%) (1)		
	ALLOW TE on incorrect mol of cyclohexanol and cyclohexene or incorrect M_r in (i)		
	OR		
	theoretical mass of cyclohexene = 0.102 x 82.0 = 8.364 g		
	% yield = <u>6.15</u> x 100 8.364 = 73.529/ 73.53/ 73.5/ 74 (%) (1)		
	ALLOW TE on mol of cyclohexanol, mass of cyclohexene or incorrect <i>M</i> _r		
	IGNORE SF except 1 SF		

(Total for Question 10 = 14 marks)

Question Number	Acceptable Answers	Reject	Mark
11(a)	C _n H _{2n} ALLOW Letters other than n		1

ALLOW: (partially) displayed or skeletal formulae throughout **Q11(b) IGNORE:** additional incorrect non-organic products

Question Number	Acceptable Answers	Reject	Mark
11(b)(i)	CH ₃ CH ₃	C ₂ H ₆	1

Question Number	Acceptable Answers	Reject	Mark
11(b)(ii)	CICH ₂ CH ₂ CI / CH ₂ CICH ₂ CI	$C_2H_4Cl_2$	1

ONLY PENALISE <u>ONCE ONLY</u> in (b)(iii) & (b)(iv) THE CONNECTIVITY BETWEEN C and OH if CLEARLY a C to H covalent bond has been drawn

Question	Acceptable Answers	Reject	Mark
Number			
11(b)(iii)	CH ₂ CH ₂ OH / CH ₂ OHCH ₂ OH	$C_2H_6O_2$ /	1
		OH CH ₂ CH ₂ OH	

Question Number	Acceptable Answers	Reject	Mark
11(b)(iv)	HOCH ₂ CH ₂ Br / CH ₂ OHCH ₂ Br	$BrCH_2CH_2Br / C_2H_5OBr / C_2H_4Br_2$	1

PENALISE USE OF Br instead of Cl once only in parts (c)(i) & (c)(ii) PENALISE missing H atoms from displayed formulae once only in parts (c)(i) & (c)(ii)

Acceptable Answers	Reject	Mark
$H = \begin{pmatrix} C & H \\ H & H \\ H & H \\ H & H \\ (Major product) \end{pmatrix} (1)$ $H = \begin{pmatrix} H & H \\ H & H \\ H & H \\ H & H \\ (Minor product) \end{pmatrix} (1)$ Both DISPLAYED structures, with all bonds and atoms shown but in the wrong boxes scores (1) $PENALISE$ $CH_3 not fully displayed ONCE only So CH_3CH(CI)CH_3 and CH_3CH_2CH_2CI scores (1)$		2
	Acceptable Answers $\begin{array}{c} H \\ H \\ C \\ C \\ H \\ H$	Acceptable AnswersReject H CI H H C C H H H $(Major product)$ (1) H

Question Number	Acceptable Answers	Reject	Mark
11(d)(i)	$\mathbf{n}C_{3}H_{6} \rightarrow \overset{H}{\overset{H}}\overset{H}{\overset{H}}\overset{H}{\overset{H}}\overset{H}{\overset{H}}\overset{H}{\overset{H}}\overset{H}{\overset{H}}\overset{H}{\overset{H}}\overset{h}{\overset{H}}\overset{h}{\overset{H}}\overset{h}{\overset{H}}\overset{h}{\overset{H}}\overset{h}{\overset{H}}\overset{h}{\overset{h}}\overset{h}{\overset{h}}\overset{h}{\overset{H}}\overset{h}{\overset{H}}\overset{h}{\overset{h}}\overset{h}{$		3
	ALLOW		
	CH_3 fully displayed or just as CH_3		
	BOTH continuation bonds (with or without bracket shown) (1)		
	If C=C bond left in polymer on right- hand side, then max (1)		
	Mark the three points independently		

Question Number	Acceptable Answers	Reject	Mark
11(d)(ii)	Non-biodegradable IGNORE References to toxicity of poly(propene) / flammability IGNORE Litter / pollution / waste of resources / costs ALLOW People are reluctant to recycle OR Harmful to marine life / harmful to wildlife OR References to `landfill' OR References to `incineration' producing toxic fumes/toxic gases / CO ₂ / Greenhouse gases OR References to use of energy/fuel used in transport (of waste) OR It takes a long time to degrade		1

Question	Acceptable Answers	Reject	Mark
11(e)(i)	$3C(s) + 3H_2(g) \qquad \Delta H_f \qquad C_3H_6(g)$ $(+4^{1/2}O_2) \qquad (+4^{1/2}O_2)$ $3CO_2(g) \text{ and } 3H_2O(l)$		1
	Both arrows in the correct direction AND 3CO ₂ and 3H ₂ O in lowest box IGNORE state symbols, even if incorrect IGNORE extra O ₂ molecules in box or alongside arrows		

Question Number	Acceptable Answers	Reject	Mark
11(e)(ii)	1st mark (-394 x 3) + (-286 x 3) OR		2
	$= -2040 (kJ mol^{-1})$ (1)		
	2nd mark: $\Delta H_{\rm f} = -2040 - (-2058)$		
	= (+)18 (kJ mol ⁻¹) (1)		
	NOTE: The following answers score (1) mark with or without working $-18 (kJ mol^{-1})$ $(+)1378 (kJ mol^{-1})$ $(+)806 (kJ mol^{-1})$ $(+)590 (kJ mol^{-1})$ $-4098 (kJ mol^{-1})$ IGNORE units even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
12(a)(i)	Curly arrow from double bond towards iodine atom AND curly arrow from the I-Cl bond to the chlorine atom (1) $H \xrightarrow[\delta^+]{\delta^+} H$ δ^- CH ₃		3
	Carbocation intermediate (1)		
	$H = CH_{3}$ $H = C = C = - C = - H$ $H = H$ $H = C = C = - H$ $H = H$ $H = H$ $H = $	δ^+ for +	
	correct C ⁺ in the intermediate (1)		
	H CH ₃ H CH ₃ H CH ₃ H CH ₃ H CH ₃ H CH ₃ H	δ^- for – on Cl [–]	
	NOTE Curly arrow can originate from anywhere on the CI^- ion in the final step. Do not have to have a lone pair of e^- on the CI^- ion		

Question Number	Acceptable Answers		Reject	Mark
12(a)(ii)	Electrophilic Addition	(1) (1)		2
	ALLOW answers in either order			
	IGNORE 'heterolytic'			

Question Number	Acceptable Answers	Reject	Mark
12(a)(iii)	$H = CH_{3}$ $H = C = C = H$ $H = C = C$ $H = C$ $H = C = C$ $H =$		1

Question Number	Acceptable Answers	Reject	Mark
12(b)(i)	Ultraviolet / UV OR Sun (light) OR Light ALLOW High temperature / 300°C (minimum) IGNORE Just heat / just radiation / rays	Mention of a `catalyst'	1

Question	Acceptable Answers		Reject	Mark
12(b)*(ii)	First mark:			7
	(Free) radical substitution	(1)		
	Second mark:			
	Homolytic (fission)	(1)	Heterolytic	
	Third mark:		(fission)	
	Initiation			
	AND			
	$ICI \rightarrow I \bullet + CI \bullet$	(1)		
	BOTH needed for the 3rd mark			
	Fourth mark:			
	Propagation	(1)		
	Fifth and sixth marks:			
	$CH_4 + CI \bullet \rightarrow CH_3 \bullet + HCI$	(1)	$H \bullet$ (the fifth and	
	$CH_3\bullet + ICI \ \rightarrow CH_3I \ + \ CI\bullet$	(1)	cannot be	
	IGNORE $CH_4 + I \bullet \rightarrow CH_3 \bullet + HI$		appears in either propagation step)	
	$CH_3\bullet + \ ICI \ \rightarrow \ CH_3CI \ + \ I \bullet$			
	Seventh mark: $CH_3 \bullet + I \bullet \rightarrow CH_3I$ OR $CI \bullet + CI \bullet \rightarrow CI_2$ OR $CH_3 \bullet + CI \bullet \rightarrow CH_3CI$ OR $CH_3 \bullet + CH_3 \bullet \rightarrow C_2H_6$ OR $I \bullet + CI \bullet \rightarrow ICI$			
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	(1)		
	IGNORE Any INCORRECT termination step(s) IGNORE State symbols, even if incorrect Curly arrows / half curly arrows, eve incorrect	n if		

(Total for Question 12 = 14 marks)

Question Number	Acceptable Answers	Reject	Mark
13(a)	Any ONE of : Contains a carbon-carbon double bond / C=C OR Contains a carbon-carbon triple bond OR Does not contain the maximum number of hydrogen atoms/hydrogen(s) OR Can undergo addition reactions	Just 'carbon double bond' / Just 'contains a double bond' / 'contains a double bond between carbon molecules '/'contains more than one carbon-carbon double bond'	1

Question Number	Acceptable Answers	Reject	Mark
13(b)(i)	$CH_3 CH_3 CH_3 CH_3 H$ $C = C$ $H H H H CH_3$ $Z-but-2-ene E-but-2-ene$ IGNORE references to <i>cis-trans</i> isomerism	If propene is drawn (0) overall	
	BOTH correct structures drawn (1)		
	<i>E</i> -isomer and <i>Z</i> -isomer correctly identified (1)		
	but-2-ene written for each isomer(1)IGNORE missing hyphensAllow angles shown as right anglesCH3 does not have to be displayed in fullAllow for E:		
	CH ₃ H C === C H CH ₃		
	OR H CH ₃ — C == C — CH ₃ H		
	Allow for Z:		
	$H \longrightarrow C \Longrightarrow C \longrightarrow H$ $ \qquad $ $CH_3 CH_3$ OR $CH_2 \longrightarrow C \Longrightarrow C \longrightarrow CH_3$		
	H H H atoms must be shown		3

Question	Acceptable Answers	Reject	Mark
Number			
13(b)(ii)	From purple/ (pale) pink to colourless	Clear for	
	Both needed	colourless/violet for	
	Accept to brown	purple	1

Question Number	Acceptable Answers	Reject	Mark
13(b)(iii)	$\begin{array}{c c} CH_3 CH_3 & \textbf{OR} & CH_3 H \\ & & & \\ HO-C - C - OH & HO-C - C - OH \\ & & \\ H & H & H & CH_3 \end{array}$ Ignore bond angles and orientation		1

Question Number	Acceptable Answers	Reject	Mark
13(b)(iv)	Breaking a C-C bond/ breaking the molecule into a smaller molecule/ breaking the hydrocarbon into a smaller hydrocarbon ALLOW Any mention of 'breaking' or 'splitting' (molecule or compound or hydrocarbon) or 'large to small' IGNORE Just 'cracking to form an alkane and an alkene'	Any mention of 'breaking down into fractions' / forms branched molecules / splitting of crude oil (into smaller molecules)	4
			1

Question Number	Acceptable Answers	Reject	Mark
13(b)(v)	$C_8H_{18} \rightarrow C_4H_8 + C_4H_{10}$ OR Equations with correct structural or displayed formulae IGNORE State symbols, even if incorrect Names, even if incorrect		1

Question	Acceptable Answers	Reject	Mark
13(c)	Electrophilic (addition) (1)		
	IGNORE `heterolytic'		
	Name of final product = $1,2$ -dibromoprop a ne		
	No TE on naming a product shown incorrectly in equation.		
	H = H = H = H = H = H = H = H = H = H =		
	Both curly arrows in first step (1)		
	The structure of the intermediate carbocation $CH_3CH^+-CH_2Br$ (1) Allow $CH_3CHBr-CH_2^+$ as intermediate		
	Curly arrow from Br ⁻ to C ⁺ (1)	If curly arrow from Br^{-} to a C ⁺	
	Partial (δ + and δ -) charges are not required Lone pair on bromide ion not required	with a Br already attached to it	5

Question Number	Acceptable Answers	Reject	Mark
13(d)(i)	100% as only one product / 100% as no by product(s) / 100% as addition reaction / 100% as no waste product (formed)	Just "atom economy is high " / no mention of 100%	1

Question	Acceptable Answers	Reject	Mark
Number			
13(d)(ii)	$\begin{array}{cccc} H & H \\ & \\ - CH_2 - C - CH_2 - C - \\ & \\ CH_3 & CH_3 \end{array}$	Just repeating unit / one repeating unit drawn with an 'n' or a '2' next to it	
	\mbox{CH}_3 groups may be on C2 and C4 OR C1 and C3		
	IGNORE brackets IGNORE `n'		
	BOTH continuation bonds are essential		L
Question Number	Acceptable Answers	Reject	Mark
13(d)(iii)	Not sustainable as poly(propene) not made from a renewable resource / Not sustainable as made from non- renewable resource / not sustainable as made from crude oil. Not sustainable as crude oil is not renewable/ Not sustainable as crude oil finite resource ALLOW Is sustainable if linked to recycling IGNORE References to non-biodegradability / long-lasting in use		1

Total for Question 13 = 16 marks