Hess's Law

Mark Scheme 1

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	The Core Principles of Chemistry
Sub Topic	Hess's Law
Booklet	Mark Scheme 1

Time Allowed: 76 minutes

Score: /63

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question Number	Correct Answer	Reject	Mark
1	А		1
	Incorrect Answers: B – The enthalpy changes are added and not subtracted C - The enthalpy changes are incorrectly doubled D- T enthalpy changes are doubled and added both incorrectly		

Question Number	Correct Answer	Reject	Mark
2	С		1

Question Number	Correct Answer	Reject	Mark
3	В		1

Question Number	Correct Answer	Reject	Mark
4 (a)	С		1

Question Number	Correct Answer	Reject	Mark
4 (b)	D		1

Question Number	Correct Answer	Reject	Mark
4 (c)	С		1

Question Number	Correct Answer	Reject	Mark
5	С		1

Question Number	Correct Answer	Mark
6	A	1

Question Number	Correct Answer	Mark
7	В	1

Question Number	Correct Answer	Mark
8	В	1

Question Number	Correct Answer	Mark
9	D	1

Question	Correct Answer	Mark
Number		
10	В	1

Question Number	Correct Answer	Mark
11	A	1

Question Number	Correct Answer	Reject	Mark
12	В		1

Question Number	Correct Answer	Reject	Mark
13	В		1

Question Number	Correct Answer	Reject	Mark
14	A		1

Question Number	Acceptable Answers	Reject	Mark
15(a)	Diagram similar to:		3
	Nata $+ E + I(g)$ East Na'(g) + $I'(g)$		
	$\begin{array}{c c} Na(g) + I(g) \\ \hline \Delta H^{\theta}_{at} \\ \hline Na(g) + \frac{1}{2}I_{z}(s) \\ \hline \Delta H^{\theta}_{at} \\ \hline Na(s) + \frac{1}{2}I_{z}(s) \\ \hline \Delta H^{\theta}_{f} \end{array}$		
	Marking point 1 Arrow upwards for first ionisation energy of sodium and correct label on arrow (from correct entities) (1)		
	Marking point 2 Arrow downwards for electron affinity of iodine and correct label on arrow (from correct entities) (1)		
	Marking point 3 Correct entities with states (on horizontal line)		
	Ignore missing electron (1)		
	ALLOW Numerical values for labels on arrows Recognisable symbols for labels on arrows, such as $\Delta H_{\text{IE}},\Delta H_{\text{EA}}$		

Question	Acceptable Answers	Reject	Mark
Number			
15 (b)	$(LE = 107 + 107 + 496 + 288 - 295 =) -703 \text{ kJ mol}^{-1}$		1

Question Number	Acceptable Answers	Reject	Mark
15 (c)	Energy is required to break bonds (1) In sodium these are metallic bonds/(electrostatic) attractions between metallic cations and the sea of delocalised electrons (1) In iodine these are covalent bonds (between the iodine atoms and London forces) (1)		3
	Mark independently		

Question Number	Acceptable Answers	Reject	Mark
15(d)(i)	(Sodium iodide has) some covalent character / some covalency/some polarisation ALLOW the electron cloud of the iodide ion is distorted Ignore references to NaI being not 100% ionic/ NaI being just 'covalent' (1)		2
	which results in stronger bonding (than purely ionic) (1) Ignore References to standard conditions/expt. error		

Question Number	Acceptable Answers	Reject	Mark
15(d)(ii)	Diagram with distorted electron density cloud towards the sodium ion	Iodine contour line overlaps with sodium contour line	1
	Example		
	Ignore the size difference between the ions		

(Total for question 15 = 10 marks)

Question Number	Acceptable Answers	Reject	Mark
16(a)(i)	IGNORE bond angles, bond lengths, bond orientations	+ 2	1

Question	Acceptable Answers	Reject	Mark
Number			
16(a)(ii)	From red-brown / red / brown to colourless	Clear/white	1
		Orange/yellow/	
		Orange-brown	

Question Number	Acceptable Answers	Reject	Mark
16(b)(i)	(Bonds broken =) 612 + 193 = (+)805 (Bonds made=) 347 + (290x2)=(-) 927 (1)		2
	Enthalpy of reaction = $(805 - 927 =) -122$ (kJ mol ⁻¹)		
	Correct answer with no working scores two marks		
	ALLOW (All bonds broken=)+4803 (All bonds made =)-4925 (1)		
	Enthalpy of reaction = $(+4803 - 4925 =) -122$ (kJ mol ⁻¹) (1)		
	Award one mark for (+) 122 (kJ mol ⁻¹) Award one mark for a correct subtraction using one of the correct values above, example 4538 - 4925 = -387 (kJ mol ⁻¹)		

Question Number	Acceptable Answers	Reject	Mark
16(b)(ii)	Bond enthalpies are for gaseous compounds and bromine is a liquid / 1,2 dibromobutane is a liquid IGNORE Reference to just 'different states'		1

Question Number	Acceptable Answers	Reject	Mark
16(b)(iii)	Mechanism drawn similar to	_	3
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	Marking point 1 Curly arrow from double bond to Br and curly arrow from Br-Br bond to the Br (dipoles not required) (1)	Incorrect dipole	
	Marking point 2 Correct carbocation structure (1)		
	Marking point 3 Curly arrow from anywhere on the bromide ion (including the minus sign) towards the carbocation and the correct product ALLOW TE on primary carbocation (1)	^{δ–} Br	
	Note the bromide ion must have a full negative charge but the lone pair of electrons need not be shown		

Question Number	Acceptable Answers	Reject	Mark
16(b)(iv)	1-bromobutan-2-ol / CH ₃ CH ₂ CHOHCH ₂ Br/ H H H H H C C C C C C H Br OH H H ALLOW 2-bromobutan-1-ol / CH ₃ CH ₂ CHBrCH ₂ OH/ H H H H H C C C C C C H OH Br H H ALLOW 2 brome 1 butanel	Missing H's	1
	ALLOW 2-bromo-1-butanol ALLOW skeletal or structural formulae Penalise contradictory names/formulae		

TOTAL FOR QUESTION 16 = 9 MARKS

Question Number	Acceptable Answers	Reject	Mark
17(a)(i)	ΔH_2 ALLOW $\Delta H_2 = \dots$		1

Question Number	Acceptable Answers	Reject	Mark
17(a)(ii)	ΔH_5 ALLOW $\Delta H_5 = \dots$	<u>Δ<i>H</i>₅</u> 2	1

Question Number	Acceptable Answers	Reject	Mark
17(a)(iii)	$\frac{\Delta H_6}{2}$ OR ΔH_6 / 2 OR ΔH_6 ÷2 OR 0.5 ΔH_6	ΔH_6	1

Question Number	Acceptable Answers	Reject	Mark
17(a)(iv)	ΔH_1 ALLOW $\Delta H_1 = \dots$	ΔH ₇	1

Question Number	Acceptable Answers	Reject	Mark
17(b)(i)	(The energy change / enthalpy change that accompanies / energy released / enthalpy released) the formation of one mole of a(n ionic) compound (1) ALLOW as alternative for compound: lattice /crystal / substance / solid /	'Energy / enthalpy required' / 'used' 'molecule' no 1st mark	2
	from its gaseous ions (1)	'gaseous atoms' no 2 nd mark	
	NOTE 'one mole of gaseous ions' scores max (1) (ie 2nd mark only available)		
	IGNORE References to 'constituent elements' References to 'standard conditions'		
	ALTERNATIVE RESPONSE If no mark(s) already awarded from above, can answer by giving:-		
	energy change / enthalpy change per mole (1)		
	$Sr^{2+}(g) + 2Cl^{-}(g) \rightarrow SrCl_2(s)$ ALLOW Any correct 'generic' equation with state symbols included (1)		

Question Number	Acceptable Answers	Reject	Mark
17(b)(ii)	[FIRST, check the answer on the answer line IF answer = -2153 (kJ mol ⁻¹) then award (2) marks, with or without working] 1st Mark: $\Delta H_1 = \Delta H_2 + \Delta H_3 + \Delta H_4 + \Delta H_5 + \Delta H_6 + \Delta H_7$ OR $\Delta H_7 = \Delta H_1 - [\Delta H_2 + \Delta H_3 + \Delta H_4 + \Delta H_5 + \Delta H_6]$ OR $\Delta H_7 = -829 - [164 + 550 + 1064 + (122 \times 2) + (2 \times -349)]$ (1)		2
	2nd Mark:		
	$\Delta H_7 = -2153 \text{ (kJ mol}^{-1})$ (1)		
	NOTE: The following answers score (1) mark with or without working +2153 (kJ mol ⁻¹) -2031 (kJ mol ⁻¹) -2502 (kJ mol ⁻¹) -2380 (kJ mol ⁻¹) NO OTHER TEs are allowed on an incorrect expression involving Δ <i>H</i> ₇		

Question Number	Acceptable Answers	Reject	Mark
17*(c)	(Lattice energy of MgF ₂ more exothermic than that of NaF because)		3
	1st mark: Mg ²⁺ is smaller (than Na ⁺) ALLOW "Magnesium / Mg is smaller (than sodium / Na)" (1)	No 1st mark if only mention Mg atom or atomic radius	
	2nd mark:		
	Mg ²⁺ higher charge / higher charge density (than Na ⁺)	"Mg ²⁺ higher nuclear	
	ALLOW Any reference to Mg ²⁺ and Na ⁺ in answer for the 2 nd mark, unless nuclear charge mentioned	charge"	
	(1)		
	3rd mark: (So electrostatic forces of) attraction between ions stronge r in MgF ₂ (than in NaF)		
	ALLOW Stronger ionic bonds in MgF ₂ / stronger ionic bonding in MgF ₂ (1)		
	OR reverse arguments		

(Total for Question 17 = 11 marks)

Question Number	Acceptable Answers	Reject	Mark
18(a)	C_nH_{2n} ALLOW Letters other than n		1

ALLOW: (partially) displayed or skeletal formulae

throughout **Q18(b)**

IGNORE: additional incorrect non-organic products

Question Number	Acceptable Answers	Reject	Mark
18(b)(i)	CH ₃ CH ₃	C ₂ H ₆	1

Question Number	Acceptable Answers	Reject	Mark
18(b)(ii)	CICH ₂ CH ₂ CI / CH ₂ CICH ₂ CI	C ₂ H ₄ Cl ₂	1

ONLY PENALISE <u>ONCE ONLY</u> in (b)(iii) & (b)(iv) THE CONNECTIVITY BETWEEN C and OH if CLEARLY a C to H covalent bond has been drawn

Question Number	Acceptable Answers	Reject	Mark
18(b)(iii)	CH ₂ CH ₂ OH / CH ₂ OHCH ₂ OH	C ₂ H ₆ O ₂ / OH CH ₂ CH ₂ OH	1

Question Number	Acceptable Answers	Reject	Mark
18(b)(iv)	HOCH ₂ CH ₂ Br / CH ₂ OHCH ₂ Br	BrCH ₂ CH ₂ Br / C ₂ H ₅ OBr / C ₂ H ₄ Br ₂	1

PENALISE USE OF Br instead of Cl once only in parts (c)(i) & (c)(ii)

PENALISE missing H atoms from displayed formulae once only in parts (c)(i) & (c)(ii)

Question Number	Acceptable Answers	Reject	Mark
18(c)(i)	H CI H H C C C C C H H H H H (Major product) (1) H H H H (Minor product) (1) Both DISPLAYED structures, with all bonds and atoms shown but in the wrong boxes scores (1) PENALISE CH ₃ not fully displayed ONCE only So CH ₃ CH(CI)CH ₃ and CH ₃ CH ₂ CH ₂ CI scores (1)		2

Question Number	Acceptable Answers	Reject	Mark
18(c)(ii)	H_3C H		3
	attack of chloride ion (1) 1st mark: Curly arrow from C=C to H (in H—Cl) AND curly arrow from bond in H—Cl to the Cl (dipole not reqd) Curly arrows must start from the bonds NOT the atoms (1)	Full + and - charges on HCI Incorrect polarity on HCI	
	2nd mark: Structure of correct secondary carbocation (1) 3rd mark:	Extra / spare bond dangling from the C+ carbon	
	Curly arrow from anywhere on the chloride ion (including the minus sign) towards the C+ on the carbocation (1)	δ- on chloride ion instead	
	NOTE: The chloride ion must have a full negative charge, but the lone pair of electrons on the Cl ⁻ need not be shown	of CI	
	ALLOW: TE on major product given in (c)(i)		
	Skeletal formulae can be used Mark the three points independently		

Question Number	Acceptable Answers	Reject	Mark
18(d)(i)	$\mathbf{n}C_3H_6 \rightarrow \begin{array}{c} H \\ \downarrow \\ H \\ \downarrow \\ H \\ H \end{array}$		3
	TWO 'n' in the equation and a correct formula (molecular or structural) for propene on the left-hand side of the equation (1)		
	One correct repeating unit, with the methyl branch shown (1)		
	ALLOW		
	CH₃ fully displayed or just as CH₃		
	BOTH continuation bonds (with or without bracket shown) (1)		
	If C=C bond left in polymer on right- hand side, then max (1)		
	Mark the three points independently		

Question Number	Acceptable Answers	Reject	Mark
Number 18(d)(ii)	Non-biodegradable IGNORE References to toxicity of poly(propene) / flammability IGNORE Litter / pollution / waste of resources / costs ALLOW People are reluctant to recycle OR Harmful to marine life / harmful to wildlife OR References to 'landfill' OR References to 'incineration' producing toxic fumes/toxic gases / CO ₂ / Greenhouse gases OR References to use of energy/fuel used in transport (of waste) OR It takes a long time to degrade		1

Question Number	Acceptable Answers	Reject	Mark
18(e)(i)	$\begin{array}{c c} 3C(s) & +3H_2(g) \\ \hline \\ (+41/2O_2) \\ \hline \\ 3CO_2(g) \text{ and } 3H_2O(I) \\ \hline \\ Both arrows in the correct direction \\ \end{array}$		1
	AND 3CO ₂ and 3H ₂ O in lowest box IGNORE state symbols, even if incorrect IGNORE extra O ₂ molecules in box or alongside arrows		

Question Number	Acceptable Answers	Reject	Mark
18(e)(ii)	1 st mark (-394 x 3) + (-286 x 3) OR		2
	$= -2040 \text{ (kJ mol}^{-1}) $ (1)		
	2nd mark: $\Delta H_f = -2040 - (-2058)$		
	= $(+)18 (kJ mol^{-1})$ (1)		
	NOTE: The following answers score (1) mark with or without working -18 (kJ mol ⁻¹) (+)1378 (kJ mol ⁻¹) (+)806 (kJ mol ⁻¹) (+)590 (kJ mol ⁻¹) -4098 (kJ mol ⁻¹) IGNORE units even if incorrect		

(Total for Question 18 = 17 marks