www.igexams.com

Hess's Law

Mark Scheme 1

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	The Core Principles of Chemistry
Sub Topic	Hess's Law
Booklet	Mark Scheme 1

Time Allowed:	$\mathbf{7 6}$ minutes
Score:	$/ 63$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	$' 77.5 \%$	70%	62.5%	57.5%	45%	$<45 \%$

www.igexams.com

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$	A		1
	Incorrect Answers: B - The enthalpy changes are added and not subtracted C - The enthalpy changes are incorrectly doubled D- T enthalpy changes are doubled and added both incorrectly		

Question Number	Correct Answer	Reject	Mark
$\mathbf{2}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{3}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{4 (a)}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
4(b)	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
4(c)	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{5}$	C		$\mathbf{1}$

www.igexams.com

Question Number	Correct Answer	Mark
$\mathbf{6}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{7}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{8}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{9}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 0}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 1}$	A	$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 3}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 4}$	A		1

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
15(a)	Diagram similar to:		3
	Marking point 1 Arrow upwards for first ionisation energy of sodium and correct label on arrow (from correct entities) (1) Marking point 2 Arrow downwards for electron affinity of iodine and correct label on arrow (from correct entities) (1) Marking point 3 Correct entities with states (on horizontal line) I gnore missing electron (1) ALLOW Numerical values for labels on arrows Recognisable symbols for labels on arrows, such as $\Delta H_{I E}, \Delta H_{E A}$		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5}$ (b)	$(\mathrm{LE}=107+107+496+288-295=)-703 \mathrm{~kJ} \mathrm{~mol}^{-1}$		1

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5}$ (c)	Energy is required to break bonds (1) In sodium these are metallic bonds/(electrostatic) attractions between metallic cations and the sea of delocalised electrons (1)	3	
In iodine these are covalent bonds (between the iodine atoms and London forces) (1) Mark independently			

Question Number	Acceptable Answers	Reject	Mark
15(d)(i)	(Sodium iodide has) some covalent character / some covalency/some polarisation ALLOW the electron cloud of the iodide ion is distorted Ignore references to Nal being not 100\% ionic/ Nal being just 'covalent' (1) which results in stronger bonding (than purely ionic) (1) Ignore References to standard conditions/expt. error	2	

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 (d) (i i)}$	Diagram with distorted electron density cloud towards the sodium ion	lodine contour line overlaps with sodium contour line	1
	Example		

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 (a) (i)}$		+	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 (a) (i i)}$	From red-brown / red / brown to colourless	Clear/white Orange/yellow/ Orange-brown	1

Question Number	Acceptable Answers	Reject	Mark
16(b)(i)	(Bonds broken =) $612+193=(+) 805$ (Bonds made=) $347+(290 \times 2)=(-) 927$ (1) Enthalpy of reaction $=(805-927=)-122(\mathrm{~kJ}$ mol^{-1}) Correct answer with no working scores two marks ALLOW (All bonds broken $=$) +4803 (All bonds made $=$) -4925 (1) Enthalpy of reaction $=(+4803-4925=)-122(\mathrm{~kJ}$ mol^{-1}) (1) Award one mark for (+) $122\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Award one mark for a correct subtraction using one of the correct values above, example $4538-4925=-387\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 (b) (i i)}$	Bond enthalpies are for gaseous compounds and bromine is a liquid / 1,2 dibromobutane is a liquid IGNORE Reference to just 'different states'	1	

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
16(b)(iii)	Mechanism drawn similar to Marking point 1 Curly arrow from double bond to Br and curly arrow from $\mathrm{Br}-\mathrm{Br}$ bond to the Br (dipoles not required) (1) Marking point 2 Correct carbocation structure (1) Marking point 3 Curly arrow from anywhere on the bromide ion (including the minus sign) towards the carbocation and the correct product ALLOW TE on primary carbocation (1) Note the bromide ion must have a full negative charge but the lone pair of electrons need not be shown	Incorrect dipole ${ }^{\delta-}-\mathrm{Br}$	3

Question Number	Acceptable Answers	Reject	Mark
16(b)(iv)	1-bromobutan-2-ol / $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOHCH}_{2} \mathrm{Br} /$ ALLOW 2-bromobutan-1-ol/ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHBrCH}_{2} \mathrm{OH} /$ ALLOW 2-bromo-1-butanol ALLOW skeletal or structural formulae Penalise contradictory names/formulae	Missing H's	1

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (a) (i)}$	$\Delta \mathrm{H}_{2}$ ALLOW $\Delta \mathrm{H}_{2}=\ldots \ldots .$.		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (a) (i i)}$	ΔH_{5} ALLOW $\Delta H_{5}=\ldots \ldots .$.	$\frac{\Delta H_{5}}{2}$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (a) (\text { iii) }}$	$\frac{\Delta \mathrm{H}_{6}}{2}$ $\mathrm{OR} \Delta \mathrm{H}_{6} / 2$ OR $\Delta \mathrm{H}_{6} \div 2 \mathrm{OR} 0.5 \Delta \mathrm{H}_{6}$	$\Delta \mathrm{H}_{6}$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (a) (i v)}$	ΔH_{1} ALLOW $\Delta H_{1}=\ldots \ldots \ldots$.	$\Delta H_{\mathbf{7}}$	$\mathbf{1}$

www.igexams.com

Question	Acceptable Answers	Reject	Mark
17(b)(i)	(The energy change / enthalpy change that accompanies / energy released / enthalpy released) the formation of one mole of a(n ionic) compound ALLOW as alternative for compound: lattice /crystal / substance / solid / product from its gaseous ions NOTE 'one mole of gaseous ions' scores \max (1) (ie 2nd mark only available) IGNORE References to 'constituent elements' References to 'standard conditions' ALTERNATIVE RESPONSE If no mark(s) already awarded from above, can answer by giving:- energy change / enthalpy change per mole $\begin{equation*} \mathrm{Sr}^{2+}(\mathrm{g})+2 \mathrm{Cl}^{-}(\mathrm{g}) \rightarrow \mathrm{SrCl}_{2}(\mathrm{~s}) \tag{1} \end{equation*}$ ALLOW Any correct 'generic' equation with state symbols included	'Energy / enthalpy required' / 'used' 'molecule' no $\mathbf{1}^{\text {st }}$ mark 'gaseous atoms' no $2^{\text {nd }}$ mark	2

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
17(b)(ii)	[FIRST, check the answer on the answer line IF answer $=\mathbf{- 2 1 5 3}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ then award (2) marks, with or without working] 1st Mark: $\begin{aligned} & \Delta \mathrm{H}_{1}=\Delta \mathrm{H}_{2}+\Delta \mathrm{H}_{3}+\Delta \mathrm{H}_{4}+\Delta \mathrm{H}_{5}+\Delta \mathrm{H}_{6}+\Delta \mathrm{H}_{7} \\ & \mathrm{OR} \\ & \Delta \mathrm{H}_{7}=\Delta \mathrm{H}_{1}-\left[\Delta \mathrm{H}_{2}+\Delta \mathrm{H}_{3}+\Delta \mathrm{H}_{4}+\Delta \mathrm{H}_{5}+\right. \\ & \left.\Delta \mathrm{H}_{6}\right] \end{aligned}$ OR $\begin{align*} \Delta H_{7}=-829- & {[164+550+1064+} \\ & (122 \times 2)+(2 \times-349)] \tag{1} \end{align*}$ 2nd Mark: $\begin{equation*} \Delta \mathrm{H}_{7}=-2153\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$ NOTE: The following answers score (1) mark with or without working $+2153\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ $-2031\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ $-2502\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ $-2380\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ NO OTHER TEs are allowed on an incorrect expression involving $\Delta \mathrm{H}_{7}$		2

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
17*(c)	(Lattice energy of MgF_{2} more exothermic than that of NaF because) 1st mark: Mg^{2+} is smaller (than Na^{+}) ALLOW "Magnesium / Mg is smaller (than sodium / Na)" 2nd mark: Mg^{2+} higher charge / higher charge density (than Na^{+}) ALLOW Any reference to Mg^{2+} and Na^{+}in answer for the $2^{\text {nd }}$ mark, unless nuclear charge mentioned 3rd mark: (So electrostatic forces of) attraction between ions stronger in MgF_{2} (than in NaF) ALLOW Stronger ionic bonds in MgF_{2} / stronger ionic bonding in MgF_{2} OR reverse arguments	No $1^{\text {st }}$ mark if only mention Mg atom or atomic radius " Mg^{2+} higher nuclear charge"	3

(Total for Question 17 = 11 marks)

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (a)}$	$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$		$\mathbf{1}$
	ALLOW Letters other than n		

ALLOW: (partially) displayed or skeletal formulae throughout Q18(b)
IGNORE: additional incorrect non-organic products

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (b) (i)}$	$\mathrm{CH}_{3} \mathrm{CH}_{3}$	$\mathrm{C}_{2} \mathrm{H}_{6}$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (b) (i i) ~}$	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl} / \mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$	$\mathbf{1}$

ONLY PENALISE ONCE ONLY in (b)(iii) \& (b)(iv) THE CONNECTIVITY BETWEEN C and OH if CLEARLY a \mathbf{C} to \mathbf{H} covalent bond has been drawn

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (b) (i i i) ~}$	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{OH}$	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2} /$ $\mathbf{O H C H}_{2} \mathrm{CH}_{2} \mathrm{OH}$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (b) (i v) ~}$	$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{Br} / \mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{Br}$	$\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{Br} /$ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OBr} /$ $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$	$\mathbf{1}$

PENALISE USE OF Br instead of $\mathbf{C l}$ once only in parts (c)(i) \&
 (c)(ii)
 PENALISE missing H atoms from displayed formulae once only in parts (c)(i) \& (c)(ii)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (c) (i) ~}$			

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
18(c)(ii)	 attack of chloride ion (1) 1st mark: Curly arrow from $\mathrm{C}=\mathrm{C}$ to H (in $\mathrm{H}-\mathrm{Cl}$) AND curly arrow from bond in $\mathrm{H}-\mathrm{Cl}$ to the Cl (dipole not reqd) Curly arrows must start from the bonds NOT the atoms	Full + and charges on HCl Incorrect polarity on HCl	3
	2nd mark: Structure of correct secondary carbocation 3rd mark: Curly arrow from anywhere on the chloride ion (including the minus sign) towards the $\mathrm{C}+$ on the carbocation NOTE: The chloride ion must have a full negative charge, but the lone pair of electrons on the Cl^{-} need not be shown ALLOW: TE on major product given in (c)(i) Skeletal formulae can be used Mark the three points independently	Extra / spare bond dangling from the C+ carbon δ - on chloride ion instead of Cl^{-}	

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
18(d)(i)	 TWO ' n ' in the equation and a correct formula (molecular or structural) for propene on the left-hand side of the equation One correct repeating unit, with the methyl branch shown ALLOW CH_{3} fully displayed or just as CH_{3} BOTH continuation bonds (with or without bracket shown) If $\mathrm{C}=\mathrm{C}$ bond left in polymer on righthand side, then max (1) Mark the three points independently		3

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (d) (i i)}$	Non-biodegradable		
	IGNORE References to toxicity of poly(propene) / flammability IGNORE Litter / pollution / waste of resources / costs		
	ALLOw People are reluctant to recycle OR Harmful to marine life / harmful to wildlife OR References to 'landfill' OR References to 'incineration' producing toxic fumes/toxic gases / CO / Greenhouse gases OR References to use of energy/fuel used in transport (of waste) OR It takes a long time to degrade		

Question Number	Acceptable Answers	Reject	Mark
18(e)(i)	Both arrows in the correct direction AND $3 \mathrm{CO}_{2}$ and $3 \mathrm{H}_{2} \mathrm{O}$ in lowest box IGNORE state symbols, even if incorrect IGNORE extra O_{2} molecules in box or alongside arrows		1

Question Number	Acceptable Answers	Reject	Mark
18(e)(ii)	$\begin{aligned} & \mathbf{1}^{\text {st }} \text { mark } \\ & (-394 \times 3)+(-286 \times 3) \end{aligned}$ OR $\begin{equation*} =-2040\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$ 2nd mark: $\Delta H_{f} \quad=-2040-(-2058)$ $\begin{equation*} =(+) 18\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$ NOTE: The following answers score (1) mark with or without working $-18\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ $(+) 1378\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ $(+) 806\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ $(+) 590\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ -4098 (kJ mol ${ }^{-1}$) IGNORE units even if incorrect		2

