Hess's Law

Mark Scheme 2

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	The Core Principles of Chemistry
Sub Topic	Hess's Law
Booklet	Mark Scheme 2

Time Allowed: 70 minutes

Score: /58

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question Acceptable Answers Reject Mar Number Mar	Question Number	Acceptable Answers		Reject	Mark
1(a) 1st mark – idea of moles / amounts specified (Enthalpy change when) the number of moles of reactants ALLOW (Enthalpy change when) the number of moles of products or substances / just molar quantities / just amounts / just moles (1) 2nd mark – idea of an equation (react as specified in the balanced) equation (react as specified in the balanced) equation (standard) conditions / just 'enthalpy change that occurs during a reaction'		specified (Enthalpy change when) the number moles of reactants ALLOW (Enthalpy change when) the number moles of products or substances / just molar quantities / just amounts / just moles 2nd mark – idea of an equation (react as specified in the balanced) equation IGNORE references to (standard) conditions / just 'enthalpy change that occurs during the standard of the number of the num	of of it : (1)	reactants' / 'One mole of products' for 1st	2

Question Number	Acceptable Answers	Reject	Mark
1(b)(i)	(Heat energy absorbed = 100 x 4.2 x 5.5 =) 2310 (J) ALLOW 2.3(10) kJ IGNORE sign and sf except one sf		1

Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	(Moles $NH_4CNS = \frac{15.22}{76.1}$ =) 0.2(00) (mol)		1
	IGNORE sf		
	ALLOW $M_r = 76$ for NH_4CNS to give 0.200(3) (mol)		

Question Number	Acceptable Answers	Reject	Mark
1(b)(iii)	ΔH _{reaction} = +2.3(10) x2 = +23.1 (kJ mol ⁻¹) 0.2(00) = +23 (kJ mol ⁻¹) to 2 sf First mark – correct computation of ΔH _{reaction} : 2 x [answer to (b)(i) in kJ ÷ answer to (b)(ii) in mol] Second mark – stand alone, for correct rounding: A final answer to two sf Third mark – stand alone, for giving a + sign for endothermic reaction: + sign in front of final answer NOTE: +12 (kJ mol ⁻¹) scores (2)	Incorrect units given by the candidate (no 3 rd scoring	3
	(i.e. the 2nd and 3rd marks)	point)	

Question Number	Acceptable Answers	Reject	Mark
1(c)(i)	(Average amount of) energy/enthalpy required to break one mole of (covalent) bonds ALLOW Energy change/enthalpy change to break one mole of (covalent) bonds (1)	Energy/enthalpy released OR 'Bonds formed/made' OR 1 mol of compound for 1st mark	2
	(in the) gas / gaseous (state) (1)		

Question	Acceptable Answers	Reject	Mark
1(c)(ii)	For a pi/π-bond: Sideways overlap of p-orbitals / overlap of p-orbitals above and below stated or drawn on a diagram (1) For a sigma/σ-bond: Head-on overlap of any orbitals, stated or drawn on a diagram (1) MAX (1) if it is not specified/clear which type of overlap relates to which type of bond IGNORE Incorrect diagram NOTE JUST 1 st diagram below scores (1) whereas JUST 2 nd diagram below scores (2) π-bond NOTE: For the σ-bond, allow any form of 'end-on' overlap of orbitals MAX (1) if only an UNLABELLED but otherwise correct diagram is given (ie also no words)		2

Question Number	Acceptable Answers	Reject	Mark
1(c)(iii)	π-bond is weak(er) OR σ-bond is strong(er) OR The sideways overlap is less effective than the head-on overlap ALLOW The two bonds in the (C=C) double bond are not the same strength IGNORE References to C=C bond more reactive than C-C bond / 'restricted rotation'	π-bond is stronger than the σ-bond OR C=C bond weaker than C-C bond	1

Question Number	Acceptable Answers		Reject	Mark
1(c)(iv)	[FIRST, check the answer on the answer line IF answer = -1936 (kJ mol ⁻¹) award (3) marks; $+1936$ (kJ mol ⁻¹) scores (2)] Bonds broken (6 x (C-H) = 6 x 413 + 1 x (C-C) = 1 x 347 + 1 x (C=C) = 1 x 612 + 4½ x (O=O) = 4½ x 498 =) (+)5678 Bonds made (6 x (C=O) = 6 x -805 + 6 x (O-H) = 6 x -464 =) (-)7614 $\Delta H_{reaction}$ = bonds broken + bonds made = (+)5678 + (-)7614 = -1936 (kJ mol ⁻¹) NOTE 3rd mark CQ on answers calculated for bond broken and bonds made	(1) (1)		3

Question Number	Acceptable Answers	Reject	Mark
1(c)*(v)	Under standard conditions/298 K water is a liquid OR (Calculations involving) bond energies refer to (water in) gaseous state (1) Energy released/given out on changing from gas to liquid OR Energy absorbed/taken in on changing from liquid to gas (1) ALLOW max (1) if state that 'bond energies are average values (from a range of compounds)' IGNORE References to 'heat losses' / 'incomplete combustion'		2

(Total for Question 1 = 17 marks)

Question Number	Acceptable Answers	Reject	Mar k
2(a)	(The energy / enthalpy change / released that accompanies the formation of)	'energy required' / 'energy needed' / 'energy it takes'	2
	one mole of a(n ionic) compound (1)		
	ALLOW as alternative for compound: lattice /crystal / substance / solid / product / salt		
	from (its) gaseous ions (1)	'from one mole of gaseous ions ' (no 2nd mark)	
		Just 'from gaseous elements' (no 2nd mark)	
	IGNORE References to 'standard conditions' or any incorrect standard conditions		
	ALTERNATIVE RESPONSE If no mark(s) already awarded from above, can answer by giving:-		
	energy change per mole / enthalpy change per mole (1)		
	$Li^+(\mathbf{g}) + F^-(\mathbf{g}) \Rightarrow LiF(s)$ (1)		
	NOTE If lattice energy of dissociation is given (e.g. "energy required to break down 1 mol of an ionic lattice into its gaseous ions") max (1) for the 2nd scoring point 'gaseous ions'		

Penalise use of 'FI' instead of 'F' once only	
If Box 1 is INCORRECT max (2) for correct transitions e.g if use $F(g)$ or $F_2(g)$ instead of $\frac{1}{2}F_2(g)$, then 2 marks available for two correct transitions involving lithium.	

Question Number	Acceptable Answers	Reject	Mark
2(b)(ii)	ST, CHECK THE FINAL ANSWER IF answer = -1046 (kJ mol ⁻¹) then award (2) marks, with or without working		2
	Otherwise look for		
	$-616 = (+159) + (+520) + (+79) + (-328) + \Delta H_{LE}$ OR $\Delta H_{LE} = -616 - [(+159) + (+520) + (+79) + (-328)]$ $= -616 - 430$ $= -1046 \text{ (kJ mol}^{-1})$ (1)		
	NOTE ALLOW for 1 mark : (+)1046 (wrong sign) -186 (+430 instead of -430) (+)186 (+616 instead of -616) -1006.5 (+79 halved to +39.5) -1702 (wrong sign for 328)		

Question Number	Acceptable Answers	Reject	Mark
*2(c)(i)	ALLOW reverse argument where appropriate		2
	(NaF more negative than NaCl because)		
	First mark F smaller (than Cl) ALLOW `fluorine ion is smaller (than a chlorine ion')	"NaF is smaller than NaCl" F has a smaller atomic radius than Cl	
	OR F ⁻ larger charge density (than Cl ⁻) (1)		
	Second mark:		
	F ⁻ (forms) stronger (electrostatic) attractions (than Cl ⁻)		
	IGNORE just 'stronger (ionic) bonds' (1)		
	Penalise ONCE ONLY in (c)(i) and (c)(ii) the use of the word 'atom(s)' or 'molecule(s)'/ use of just formulae such as 'Mg', 'Na', 'F', 'F ₂ ', 'Cl', 'Cl ₂ ', etc.		
	OR Penalise ONCE ONLY in (c)(i) and (c)(ii) the use of words such as just 'magnesium' (instead of magnesium ions/Mg ²⁺) and/or just 'fluorine' (instead of fluoride ions/F ⁻) /and or just 'chlorine' (instead of chloride ions/Cl ⁻)		
	IGNORE Any comments about polarization of the anion (by the cation) / covalent character		

Question Number	Acceptable Answers	Reject	Mark
_	ALLOW reverse argument where appropriate (NaF less negative than MgF ₂ because) First mark - size: Mg ²⁺ smaller (than Na ⁺) OR 'Magnesium ion' is smaller (than Na ⁺) Second mark - charge: Mg ²⁺ has a greater charge (density) (than Na ⁺) OR	"MgF ₂ is smaller than NaF" Mg ²⁺ has a smaller atomic radius than Na ⁺	Mark 2
	'Magnesium ion' has a greater charge (density) (than Na ⁺) (1)		
	[NOTE: It follows that the statement that "Mg ²⁺ ions are smaller than Na ⁺ ions" would score BOTH marks]		
	IGNORE Any comments about polarization of the anion (by the cation) / covalent character		

(Total for Question 2 = 12 marks)

Question Number	Acceptable Answers	Reject	Mark
3(a)	(Enthalpy/energy change when) one mole of a compound / one mole of a substance IGNORE Statements such as "energy released" or "energy required" here (1)		3
	is formed from its elements (in their standard states, under standard conditions) (1)	'is formed from its gaseous elements'	
	(Standard temperature is) 298 K / 25°C ALLOW "K'		
	IGNORE References to room temperature (Standard pressure is) 1 atm / 101 kPa / 100 kPa (1)		

Question Number	Acceptable Answers	Reject	Mark
3(b)	6C(s, graphite) + $7H_2(g) \rightarrow C_6H_{14}(I)$		2
	ALLOW 6C(s) / 6C(graphite)		
	Species and balancing correct (1)		
	State symbols correct (1)		
	State symbols mark is dependent on correct species but allow this mark if 14H used instead of $7H_2$		
	NOTE $C_6H_{14}(I) \rightarrow 6C(s, graphite) + 7H_2(g)$ scores (1)		

Question	Acceptable Answers	Reject	Mark
Number			
3(c)	$\boxed{C(s) + 2H_2(g)} \rightarrow \boxed{CH_4(g)}$		3
	$(+2O_2(g))$ $(+2O_2(g))$		
	$CO_2(\mathbf{g}) + 2H_2O(\mathbf{I})$		
	First mark: Both arrows point downwards (1)		
	Second mark: $CO_2(\mathbf{g}) + 2H_2O(\mathbf{I})$ (1)	2 H ₂ O(g)	
	Third mark: ((1 x -394) + (2 x -286) - (1 x -890) =)		
	- 76 (kJ mol ⁻¹) No TE from cycle arrows	If incorrect units with a final answer, no 3 rd mark	
	(1)		

Question	Acceptable Answers	Reject	Mark
Number			
3(d)(i)	$(+1652 \div 4 =) (+)413 (kJ mol^{-1})$	- 413	1
	,		

Question Number	Acceptable Answers	Reject	Mark
3(d)(ii)	st mark: (+2825 — 6 x answer to (d)(i)) ALLOW TE only from a positive value given as answer to (d)(i) (1)		2
	Second mark: = (+)347 (kJ mol ⁻¹) Second mark is CQ on first mark Correct answer with or without working scores NOTE (1)		
	$-347 \text{ (kJ mol}^{-1})$ scores (1)		

(Total for Question 3 = 11 marks)

Question Number	Acceptable Answers	Reject	Mark
4(a)(i)	$BaCO_3 + 2H^+ \rightarrow Ba^{2+} + CO_2 + H_2O$ IGNORE state symbols even if wrong IGNORE charges $Ba^{2+}CO_3^{2-}$	Cl ⁻ remains on both sides of equation, unless crossed out / "Ba ²⁺ + CO ₃ ²⁻ " on left-hand side	1

Question Number	Acceptable Answers	Reject	Mark
4(a)(ii)	Effervescence / fizzing / bubbles (of gas) (1)	Just "Gas given off"	
	Solid disappears /dissolves (1) IGNORE Tests on gas / just 'vigorous reaction' / any references to temperature change		2

Question Number	Acceptable Answers	Reject	Mark
4(b)(i)	$(25 \times 2.00/1000) = 0.05 / 5 \times 10^{-2} $ (mol) Ignore sf		1

Question Number	Acceptable Answers	Reject	Mark
4(b)(ii)	(0.5 x (5 x 10 ⁻² x 197.3)) = 4.9325 / 4.933 / 4.93 / 4.9 (g) TE from (b)(i) Ignore SF except 1		1

Question Number	Acceptable Answers	Reject	Mark
4(b)(iii)	So that all acid was neutralized / all acid reacted / all acid used up / all H ⁺ used up	So that reaction is complete /to get maximum reaction / "So that all the BaCO ₃ is used up" / Just "to neutralize the acid" / "To make sure all the solid reacts"	1

Question Number	Acceptable Answers	Reject	Mark
4(b)(iv)	Filtration/ centrifuging	Decanting	1

Question Number	Acceptable Answers	Reject	Mark
4(b)(v)	Theoretical yield = $(244 \times 5 \times 10^{-2} \times 0.5)$ = $6.1(0)$ (g) (1)	4.93 x 100% 5.35	
	TE from (b)(i) (244 x ans to b(i) x 0.5)	= 92% (0)	
	% yield = (5.35 x 100 /6.10) = 87.70492 = 87.7/88%	197.3 x 100% 244	
	OR (1)	= 80.9% (0)	
	Moles of crystals = $(5.35/244 =) 0.02193$		
	% yield = ((0.02193x100/0.025) =) 87.7049 = 87.7/88%	87% (as rounding error)	
	[NB If use moles crystals 0.0219 ans=87.6%]		
	TE for mol crystals/answer to (b)(i), so 43.9% etc gets (1)		
	Correct final answer with no working shown scores both marks		
	Ignore SF except 1		2

Question Number	Acceptable Answers	Reject	Mark
4(b)(vi)	A ONE OF: Not all solid/product crystallizes Some barium chloride/product remains in solution Product lost during filtration Product/crystals left on filter paper ALLOW 'Transfer losses' / 'loss during the process' Product left on apparatus / product left on glass rod / product left on beaker IGNORE Spillages / 'blunders' NOTE: 'Loss of products during transfer and incomplete reaction' scores (0) as +1 - 1 = 0	Incomplete reaction / Equilibrium reaction / 'side products' / 'side reactions' / 'loss of reactants during transfer' / 'reactants left on apparatus' / 'vapourisation of BaCl ₂ '	1

Question Number	Acceptable Answers	Reject	Mark
4(c)(i)	Lattice energy for barium chloride E Enthalpy change of atomization of barium D Enthalpy change of atomization of Cl ₂ to 2Cl A First ionization energy of barium C Second ionization energy of barium B Enthalpy change of formation of barium chloride F All correct (3) 4 or 5 correct (2) 2 or 3 correct (1)		
			3

Question	Acceptable Answers	Reject	Mark
Number			
4(c)(ii)	Twice the (first) electron affinity	If mention of	
	OR	Cl ₂ /chloride	
	(First) electron affinity (of chlorine/CI)	/ CI ⁻	1

Question Number	Acceptable Answers	Reject	Mark
4(c)(iii)	180 + 243.4 + 503 + 965 - 697.6 + lattice energy = -858.6 OR F = D + C + B + A + X + E OR E = F - D - C - B - A - X	335.2 / -335.2 / -162.5 score (0) overall	
	Lattice energy = $-2052.4/-2052/-2050$ (kJ mol ⁻¹) (1)		
	Correct answer, with or without working scores 2 Correct method with incorrect final answer scores (1) +2052.4/+2052/+2050 (kJ mol ⁻¹) (1)		2

Question Number	Acceptable Answers	Reject	Mark
4(c)(iv)	1 mark: Bonding is (almost) 100% ionic / bonding is (almost) purely ionic /there is no covalent character / little covalent character (1) 2nd mark: (Chloride) ion(s) are not polarized / (both) ions are spherical / charge density of Ba ²⁺ too low (to polarize anion) (1) ALLOW 'Very little distortion of (electron) cloud by Ba ²⁺ ion' / 'Very little polarization of chloride (ion)'	Just "no polarization is taking place" / "no polarization of the bond" / "little distortion from electric cloud" / "barium and chlorine are not easy to polarize" / just "not much distortion" / use of Ba or CI (as implies atoms)	2

Total for Question 4 = 18 marks