Hess's Law

Mark Scheme 2

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	The Core Principles of Chemistry
Sub Topic	Hess's Law
Booklet	Mark Scheme 2

Time Allowed:	$\mathbf{7 0}$ minutes
Score:	$/ 58$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark		
1(a)	1st mark - idea of moles / amounts specified (Enthalpy change when) the number of moles of reactants ALLOW (Enthalpy change when) the number of moles of products or substances / just molar quantities / just amounts / just moles	'One mole of reactants' / 'One mole of products' for 1st mark	2		
2nd mark - idea of an equation (1)					
(react as specified in the balanced) (1)					
equation					
IGNORE					
references to					
(standard) conditions /					
just `enthalpy change that occurs during					
a reaction'				\quad	(1)
:---					
Question Number	Acceptable Answers	Reject	Mark		
:---	:---	:---	:---:		
$\mathbf{1 (b) (\mathbf { i })}$	$($ Heat energy absorbed $=$				
	$100 \times 4.2 \times 5.5=) 2310(\mathrm{~J})$		$\mathbf{1}$		
	ALLOW				
	$2.3(10) \mathbf{k J}$				
IGNORE sign and sf except one sf					
Question Number	Acceptable Answers	Reject	Mark		
:---	:---	:---	:---:		
$\mathbf{1 (b) (i i)}$	$\left(\right.$ Moles $\left.\mathrm{NH}_{4} \mathrm{CNS}=\frac{15.22}{76.1}=\right) 0.2(00)(\mathrm{mol})$		$\mathbf{1}$		
	IGNORE sf ALLOW $M_{r}=76$ for $\mathrm{NH}_{4} \mathrm{CNS}$ to give $0.200(3)(\mathrm{mol})$				

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
1(b)(iii)	$\begin{aligned} \Delta \mathrm{H}_{\text {reaction }}= & +\underline{2.3(10)} \times 2(00) \\ & =+23\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \text { to } 2 \mathrm{sf} \end{aligned}$ First mark - correct computation of $\Delta H_{\text {reaction }}$: $\mathbf{2 \times}$ [answer to (b)(i) in $k J \div$ answer to (b)(ii) in mol] Second mark - stand alone, for correct rounding: A final answer to two sf Third mark - stand alone, for giving a + sign for endothermic reaction: + sign in front of final answer NOTE: $+12\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ scores (2) (i.e. the 2nd and 3rd marks)	Incorrect units given by the candidate (no $3^{\text {rd }}$ scoring point)	3

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{1 (c) (i)}$	(Average amount of) energy/enthalpy required to break one mole of (covalent) bonds	Energy/enthalpy released OR	$\mathbf{2}$		
'Bonds					
formed/made'					
Energy change/enthalpy change to break					
one mole of (covalent) bonds					
OR					
1 mol of					
compound					
for 1st mark				\quad (1)	
:---					

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
1(c)(ii)	For a pi/ π-bond: Sideways overlap of p-orbitals / overlap of porbitals above and below stated or drawn on a diagram For a sigma/ σ-bond: Head-on overlap of any orbitals, stated or drawn on a diagram MAX (1) if it is not specified/clear which type of overlap relates to which type of bond IGNORE Incorrect diagram NOTE JUST $1^{\text {st }}$ diagram below scores (1) whereas JUST $2^{\text {nd }}$ diagram below scores (2) OR NOTE: For the σ-bond, allow any form of 'end-on' overlap of orbitals MAX (1) if only an UNLABELLED but otherwise correct diagram is given (ie also no words)		2

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (c) (i i i)}$	π-bond is weak(er) OR σ-bond is strong(er) OR The sideways overlap is less effective than the head-on overlap	π-bond is stronger than the σ-bond OR C=C bond weaker than C-C bond	$\mathbf{1}$
	ALLOW The two bonds in the (C=C) double bond are not the same strength IGNORE References to C=C bond more reactive than C-C bond / 'restricted rotation'		

Question Number	Acceptable Answers	Reject	Mark
1(c)(iv)	[FIRST, check the answer on the answer line IF answer $=\mathbf{- 1 9 3 6}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award (3) marks; +1936 ($\mathrm{kJ} \mathrm{mol}^{-1}$) scores (2)] Bonds broken $\begin{align*} & (6 \times(C-H)=6 \times 413 \\ & + \\ & 1 \times(C-C)=1 \times 347 \\ & + \\ & 1 \times(C=C)=1 \times 612 \\ & + \\ & 41122 \times(O=O)=41 / 2 \times 498=)(+) 5678 \tag{1} \end{align*}$ Bonds made $\begin{align*} & (6 \times(\mathrm{C}=\mathrm{O})=6 \times-805 \\ & + \\ & 6 \times(\mathrm{O}-\mathrm{H})=6 \times-464 \\ & =)(-) 7614 \tag{1} \end{align*}$ $\begin{align*} & \Delta \mathrm{H}_{\text {reaction }}=\text { bonds broken }+ \text { bonds made } \\ & =(+) 5678+(-) 7614=-1936\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{align*}$ NOTE 3rd mark CQ on answers calculated for bonds broken and bonds made		3

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (c) * (v)}$	Under standard conditions/298 K water is a liquid OR (Calculations involving) bond energies refer to (water in) gaseous state (1) Energy released/given out on changing from gas to liquid OR Energy absorbed/taken in on changing (1) from liquid to gas ALLOW max (1) if state that 'bond energies are average values (from a range of compounds)' IGNORE References to 'heat losses' / 'incomplete combustion'	$\mathbf{2}$	

(Total for Question 1 = 17 marks)

Question Number	Acceptable Answers	Reject	Mar k
2(a)	(The energy / enthalpy change / released that accompanies the formation of) one mole of a(n ionic) compound ALLOW as alternative for compound: lattice /crystal / substance / solid / product / salt from (its) gaseous ions IGNORE References to 'standard conditions' or any incorrect standard conditions ALTERNATIVE RESPONSE If no mark(s) already awarded from above, can answer by giving:- energy change per mole / enthalpy change per mole $\begin{equation*} \mathrm{Li}^{+}(\mathbf{g})+\mathrm{F}^{-}(\mathbf{g}) \rightarrow \mathrm{LiF}(\mathrm{~s}) \tag{1} \end{equation*}$ NOTE If lattice energy of dissociation is given (e.g. "energy required to break down 1 mol of an ionic lattice into its gaseous ions") max (1) for the 2nd scoring point 'gaseous ions'	`energy required' / `energy needed' / `energy it takes' 'from one mole of gaseous ions' (no 2nd mark) Just 'from gaseous elements' (no 2nd mark)	2

www.igexams.com

Question Number	Acceptable Answers	Reject	Mar k
2(b)(i)	 IGNORE missing electrons / e^{-} First mark (Box 1): $\begin{equation*} \mathrm{Li}(s)+1 / 2 \mathrm{~F}_{2}(\mathrm{~g}) \tag{1} \end{equation*}$ Second mark (Box 4): $\begin{equation*} \mathbf{L i}^{+}(\mathbf{g})+\mathbf{F}(\mathbf{g})\left(+\mathrm{e}^{-}\right) \tag{1} \end{equation*}$ Third and Fourth marks (if box 1 is correct): 'Box 2^{\prime} as above i.e. $\mathrm{Li}(\mathrm{g})+1 / 2 \mathrm{~F}_{2}(\mathrm{~g})$ as above 'Box 3^{\prime} as above i.e. $\mathrm{Li}^{+}(\mathrm{g})+1 / 2 \mathrm{~F}_{2}(\mathrm{~g})\left(+\mathrm{e}^{-}\right)$as above OR 'Box 2' Li(s) + F (g) 'Box 3' Li(g) + F(g) OR 'Box $2^{\prime} \mathrm{Li}(\mathrm{g})+1 / 2 \mathrm{~F}_{2}(\mathrm{~g})$ 'Box 3' $\mathrm{Li}(\mathrm{g})+\mathrm{F}(\mathrm{g})$		4

www.igexams.com

	Penalise use of 'FI' instead of ' F^{\prime} once only	
	If Box 1 is INCORRECT max (2) for correct transitions e.g if use $F(g)$ or $F_{2}(g)$ instead of $1 / 2 \mathrm{~F}_{2}(g)$, then 2 marks available for two correct transitions involving lithium.	

Question Number	Acceptable Answers	Reject	Mark
2(b)(ii)	ST, CHECK THE FINAL ANSWER IF answer $=-1046\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ then award (2) marks, with or without working Otherwise look for $\begin{align*} & -616=(+159)+(+520)+(+79)+ \\ & (-328)+\Delta \mathrm{H}_{\mathrm{LE}} \\ & \mathbf{O R} \\ & \Delta \mathrm{H}_{\mathrm{LE}}=-616-[(+159)+(+520)+ \\ & (+79)+(-328)] \\ & =-616-430 \tag{1}\\ & =-\mathbf{1 0 4 6}\left(\mathrm{kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{align*}$ NOTE ALLOW for 1 mark: (+)1046 (wrong sign) $-186(+430$ instead of -430$)$ $(+) 186(+616$ instead of -616$)$ -1006.5 (+79 halved to +39.5) -1702 (wrong sign for 328)		2

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
*2(c)(i)	ALLOW reverse argument where appropriate (NaF more negative than NaCl because) First mark F^{-}smaller (than Cl^{-}) ALLOW 'fluorine ion is smaller (than a chlorine ion') OR F^{-}larger charge density (than Cl^{-}) Second mark: F^{-}(forms) stronger (electrostatic) attractions (than Cl^{-}) IGNORE just 'stronger (ionic) bonds' Penalise ONCE ONLY in (c)(i) and (c)(ii) the use of the word 'atom(s)' or 'molecule(s)'/ use of just formulae such as ' Mg^{\prime}, ' Na^{\prime}, ' F^{\prime}, ' F_{2} ', ' Cl^{\prime}, ${ }^{\prime} \mathrm{Cl}_{2}$, etc. OR Penalise ONCE ONLY in (c)(i) and (c)(ii) the use of words such as just 'magnesium' (instead of magnesium ions $/ \mathrm{Mg}^{2+}$) and/or just 'fluorine' (instead of fluoride ions/ F^{-}) /and or just 'chlorine' (instead of chloride ions/ Cl^{-}) IGNORE Any comments about polarization of the anion (by the cation) / covalent character	"NaF is smaller than $\mathbf{N a C l}{ }^{\prime \prime}$ F^{-}has a smaller atomic radius than Cl^{-}	2

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
*2(c)(ii)	ALLOW reverse argument where appropriate (NaF less negative than MgF_{2} because) First mark - size: Mg^{2+} smaller (than Na^{+}) OR 'Magnesium ion' is smaller (than Na^{+}) Second mark - charge: Mg^{2+} has a greater charge (density) (than Na^{+}) OR 'Magnesium ion' has a greater charge (density) (than Na^{+}) [NOTE: It follows that the statement that ${ } \mathrm{Mg}^{2+}$ ions are smaller than Na^{+}ions" would score BOTH marks] IGNORE Any comments about polarization of the anion (by the cation) / covalent character	" $\mathbf{M g F}_{\mathbf{2}}$ is smaller than NaF" Mg^{2+} has a smaller atomic radius than Na^{+}	2

(Total for Question 2 = 12 marks)

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
3(a)	(Enthalpy/energy change when) one mole of a compound / one mole of a substance IGNORE Statements such as "energy released" or "energy required" here is formed from its elements (in their standard states, under standard conditions) (Standard temperature is) $298 \mathrm{~K} /$ $25^{\circ} \mathrm{C}$ ALLOW ${ }^{10} \mathrm{~K}$ ' IGNORE References to room temperature (Standard pressure is) 1 atm / 101 kPa / 100 kPa	'is formed from its gaseous elements'	3

Question Number	Acceptable Answers	Reject	Mark
3(b)	$6 \mathrm{C}\left(\mathrm{s}\right.$, graphite) $+7 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{14}(\mathrm{I})$ ALLOW $6 \mathrm{C}(\mathrm{s}) / 6 \mathrm{C}$ (graphite) Species and balancing correct $\mathbf{(1)}$		$\mathbf{2}$
	State symbols correct State symbols mark is dependent on correct species but allow this mark if 14 H used instead of $7 \mathrm{H}_{2}$ NOTE $\mathrm{C}_{6} \mathrm{H}_{14}(\mathrm{I}) \rightarrow$ 6C(s, graphite) $+7 \mathrm{H}_{2}(\mathrm{~g})$ scores (1)		

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
3(c)	First mark: Both arrows point downwards Second mark: $\begin{equation*} \mathrm{CO}_{2}(\mathbf{g})+\mathbf{2 \mathrm { H } _ { 2 } \mathrm { O } (\mathbf { I })} \tag{1} \end{equation*}$ Third mark: $\begin{aligned} & ((1 \times-394)+(2 x-286)-(1 \times \\ & -890)=) \\ & -76\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$ No TE from cycle arrows	$\mathbf{2} \mathrm{H}_{2} \mathrm{O}(\mathbf{g})$ If incorrect units with a final answer, no $3^{\text {rd }}$ mark	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (d) (i)}$	$(+1652 \div 4=)(+) \mathbf{4 1 3}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	-413	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
3(d)(ii)	st mark: (+2825-6x answer to (d)(i)) ALLOW TE only from a positive value given as answer to (d)(i) Second mark: $\begin{equation*} =(+) 347\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$ Second mark is CQ on first mark Correct answer with or without working scores NOTE $-347\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$		2

(Total for Question 3 = 11 marks)

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
4(a)(i)	$\mathrm{BaCO}_{3}+2 \mathrm{H}^{+} \rightarrow \mathrm{Ba}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ IGNORE state symbols even if wrong IGNORE charges $\mathrm{Ba}^{2+} \mathrm{CO}_{3}{ }^{2-}$	Cl^{-}remains on both sides of equation, unless crossed out $/$ " $\mathrm{Ba}^{2+}+\mathrm{CO}_{3}^{2-1}$ on left-hand side	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
4(a)(ii)	Effervescence / fizzing / bubbles (of gas) (1)	Just "Gas given off"	
	Solid disappears /dissolves IGNORE Tests on gas / just 'vigorous reaction' / any references to temperature change	(1)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 (b) (i)}$	$(25 \times 2.00 / 1000)=0.05 / 5 \times 10^{-2}(\mathrm{~mol})$ Ignore sf		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 (b) (i i)}$	$\left(0.5 \times\left(5 \times 10^{-2} \times 197.3\right)\right)$ $=4.9325 / 4.933 / 4.93 / 4.9(\mathrm{~g})$ TE from (b)(i) Ignore SF except 1		

Question Number	Acceptable Answers	Reject	Mark
4(b)(iii)	So that all acid was neutralized / all acid reacted / all acid used up / all H		
		So that reaction is complete /to get maximum reaction /"So that all the BaCO $_{3}$ is used up" / Just "to neutralize the acid" /"To make sure all the solid reacts"	$\mathbf{1}$

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
4(b)(iv)	Filtration/ centrifuging	Decanting	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
4(b)(v)	$\begin{align*} & \text { Theoretical yield } \begin{aligned} & =\left(244 \times 5 \times 10^{-2} \times 0.5\right) \\ & =6.1(0)(\mathrm{g}) \end{aligned} \\ & \begin{aligned} \text { TE from (b)(i) }(244 \times \text { ans to } \mathrm{b}(\mathrm{i}) \times 0.5) \end{aligned} \\ & \begin{aligned} \% \text { yield }=(5.35 \times 100 / 6.10) & = \\ & =87.70492 \\ & 87.7 / 88 \% \end{aligned} \tag{1} \end{align*}$ OR Moles of crystals $=(5.35 / 244=) 0.02193$ $\begin{aligned} \% \text { yield }=((0.02193 \times 100 / 0.025) & =) 87.7049 \\ & =87.7 / 88 \% \end{aligned}$ [NB If use moles crystals 0.0219 ans=87.6\%] TE for mol crystals/answer to (b)(i), so 43.9% etc gets (1) Correct final answer with no working shown scores both marks Ignore SF except 1	$\begin{align*} & \frac{4.93}{5.35} \times 100 \% \\ & =92 \% \\ & \frac{197.3}{244} \times 100 \% \tag{0}\\ & =80.9 \% \tag{1}\\ & \begin{array}{l} 87 \% \text { (0) } \\ \text { error) } \end{array} \end{align*}$	2

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
4(b)(vi)	A ONE OF: Not all solid/product crystallizes Some barium chloride/product remains in solution Product lost during filtration Product/crystals left on filter paper reaction /	Incomplete reaction / Equilibrium	
	ALLOW 'Transfer losses' / 'loss during the process' Product left on apparatus / product left on glass rod / product left on beaker IGNORE Spillages / 'blunders'	'side reactions' / 'loss of reactants during transfer' / 'reactants left on apparatus' / 'vapourisation of BaCl2'	

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
4(c)(i)	Lattice energy for barium chloride		
	E	Enthalpy change of atomization of barium	
	D		
	Enthalpy change of atomization of Cl_{2} to 2 Cl		
	A		
	First ionization energy of barium		
	\mathbf{C}		
	Second ionization energy of barium		
	Enthalpy change of formation of barium chloride		
	F		
	All correct (3)		
4 or 5 correct (2)			
2 or 3 correct (1)			

Question Number	Acceptable Answers	Reject	Mark
4(c)(ii)	Twice the (first) electron affinity OR (First) electron affinity (of chlorine/Cl)	If mention of $\mathrm{Cl}_{2} /$ chloride $/ \mathrm{Cl}^{-}$	

Question Number	Acceptable Answers	Reject	Mark
4(c)(iii)	```\(180+243.4+503+965-697.6+\) lattice energy \(=-858.6\) OR \(\mathbf{F}=\mathbf{D}+\mathbf{C}+\mathbf{B}+\mathbf{A}+\mathbf{X}+\mathbf{E}\) OR \(\mathbf{E}=\mathbf{F}-\mathbf{D}-\mathbf{C}-\mathbf{B}-\mathbf{A}-\mathbf{X}\)``` Lattice energy $=-2052.4 /-2052 /-2050\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Correct answer, with or without working scores 2 Correct method with incorrect final answer scores (1) $\begin{equation*} +2052.4 /+2052 /+2050\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$	$\begin{array}{\|l\|} \hline 335.2 \text { / } \\ -335.2 \text { / } \\ -162.5 \\ \text { score (0) } \\ \text { overall } \end{array}$	2

Question Number	Acceptable Answers	Reject	Mark
4(c)(iv)	1 mark: Bonding is (almost) 100\% ionic / bonding is (almost) purely ionic /there is no covalent character / little covalent character 2nd mark: (Chloride) ion(s) are not polarized / (both) ions are spherical / charge density of Ba^{2+} too low (to polarize anion) ALLOW 'Very little distortion of (electron) cloud by Ba^{2+} ion' / 'Very little polarization of chloride (ion)'	Just "no polarization is taking place" / "no polarization of the bond" / "little distortion from electric cloud" / "barium and chlorine are not easy to polarize" / just "not much distortion" / use of $\mathbf{B a}$ or $\mathbf{C l}$ (as implies atoms)	2

