www.igexams.com

Isotopes, Mass Spec \& RAM/ RMM

Mark Scheme

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	The Core Principles of Chemistry
Sub Topic	Isotopes, Mass Spec \& RAM/RMM
Booklet	Mark Scheme

Time Allowed:	59 minutes
Score:	$/ 49$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$

www.igexams.com

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$	D		$\mathbf{1}$
Question Number	Correct Answer	Reject	Mark
$\mathbf{2}$	B		$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{3}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{4}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{5}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{6}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{7}$	B	$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{8}$	C		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{9}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$	C		1

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 1 (a) (i)}$	$($ RAM $=(13.9 \times 10)+(86.1 \times 11))=10.861$ (1) $=10.9$ IGNORE amu $/ \mathrm{g} \mathrm{mol}^{-1}$ (1)	g/\% answers not to 3sf	
Correct answer without working scores (2)		2	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 1 (a) (i i)}$	compared to one twelfth the mass of a carbon-12 (atom/isotope) ALLOW where (one atom of) carbon-12 has a mass of exactly 12		

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :---: | :--- | :---: |
| $\mathbf{1 1 (a) (i i i)}$ | 5 protons and 5 electrons (1) | | |
| 7 7 neutrons | (1) | | |

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 1 (b) (i)}$	Any one from - deflect the ions from their normal path additional/false peaks from particles in the air ions would collide with particles in the air	Air molecules	1
	IGNORE Reference to chemical reactions/anomalous results/decreased speed of ions/ wrong percentage abundance given		

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 1 (b) (i i)}$	No effect / unaffected / they would not be accelerated/Only affects charged particles	1	
IGNORE Reference to detection/deflection/magnetic field		1	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 1 (b) (i i i)}$	Any one correct statement scores (1) Three correct statements scores (2) both oxygen atoms from the manganate(VII) ion gives a (molecular / parent ion) peak at $\mathbf{6 6}$ one oxygen atom from the manganate(VII) ion / one from water gives a (molecular / parent ion) peak at 64	Reference to peaks at $32,34,36$ or 63 or 65	2
	both oxygen atoms from the water gives a (molecular / parent ion) peak at 62		
IGNORE ${ }^{18}$ O peak ALLOW Both oxygen atoms from the magnagate(VII) ion gives a (molecular/parent ion) peak four more			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 1 (c) (i)}$	(Error 1) peaks at 35 and 37 should be in 3:1 ratio/the peak at 35 should be three times the height of the peak at 37 ALLOW Reference to the height of the peak at 35 being at 75\% compared to the height of the peak at 37 being at 25\%	Just 'greater'	2
(1)	(Error 2) there should be a peak at 72 IGNORE Reference to the height/intensity of the peak at 72 (1)		

Question Number	Acceptable Answers	Reject	Mark
11(c)(ii)	$\begin{aligned} & \left({ }^{(37} \mathrm{Cl}-{ }^{37} \mathrm{Cl}\right)^{+} \\ & \mathrm{OR} \\ & \left.{ }^{[37} \mathrm{Cl}-{ }^{37} \mathrm{Cl}\right]^{+} \\ & \mathrm{OR} \\ & \left({ }^{37} \mathrm{Cl} \mathrm{Cl}^{37}\right)^{+} \\ & \mathrm{OR} \\ & { }^{37} \mathrm{Cl}-{ }^{37} \mathrm{Cl}^{+} \\ & \mathrm{OR} \\ & { }^{37} \mathrm{Cl}_{2}+ \end{aligned}$	$\left({ }^{37} \mathrm{Cl}+{ }^{37} \mathrm{Cl}\right)^{+}$ $2{ }^{37} \mathrm{Cl}^{+}$	1

(Total for Question 11 = 12 marks)

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark	
$\mathbf{1 2 (a) (i)}$	t mark Weighted mean mass ALLOW (Weighted) average (atomic) mass Second mark (Mass) of atom(s) (of an element) ALLOW (Mass of all) the isotopes (of an element)	(1)	(1) weight	Mole(s) of atoms
Third mark Divided by / compared with $1 / 12$ th the mass of (an atom of) ${ }^{12} \mathrm{C} / \mathrm{C}-12$ OR On a scale in which ${ }^{12} \mathrm{C} / \mathrm{C}-12=12$ (g)	(1)			

Question Number	Acceptable Answers	Reject	Mark
12(a)(ii)	(Beam of) high energy electrons / accelerated electrons / electrons from electron gun / high speed electrons / ALLOW Electron beam OR Electrons bombard / hit / blast the (gaseous) atoms OR Electrons are fired at the (gaseous) atoms Knock off / liberates an electron(s) / leads to loss/removal of electron(s) (from the gaseous atoms) IGNORE References to ionising / forming (positive) ions / just an equation e.g. $M(g) \rightarrow M^{+}(g)+e$	Just ‘electron gun' / 'electron(s)' highly charged electrons Just 'takes an electron(s)'	2

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
12(a)(iii)	Correct answer with or without working scores both marks $\begin{align*} & ((84.0 \times 0.56)+(86.0 \times 9.86)+(87.0 \times \\ & 7.02)+(88.0 \times 82.56)) / 100 \tag{1}\\ & =87.7 \text { (must be to } 3 \mathrm{SF}) \tag{1} \end{align*}$ NOTE 87.71/ 87.710/87.7102 score (1) with or without working IGNORE g or $\mathrm{g} \mathrm{mol}^{-1}$, but wrong units, eg \%, lose the second mark		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 2 (b)}$	s (block)	Any number in front of the s e.g. 4s	$\mathbf{1}$
	ALLOW S (block) IGNORE group 2 / period 5	Any other group number / period number	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 2 (c)}$	First mark Correct dot and cross diagrams with 2+ (1) charge on Sr and - charge on Cl ALLOW no electrons or 8 electrons on outer shell of Sr ALLOW dots or crosses for electrons	covalent bonding (0)	$\mathbf{2}$
	ALLOW diagrams without square brackets		
Second mark Ratio of 1 strontium and 2 chloride (ions) ALLOW this shown as 2 in front of a chloride ion or subscript 2 after the ion	(1)		
IGNORE any inner shell electrons ALLOW max 1 for incorrect symbol(s)			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 2 (d)}$	$\mathrm{SrO}(\mathrm{s})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$	H_{2} scores $\mathbf{(0)}$	$\mathbf{2}$
	$\mathbf{O R}$	$\mathrm{SrO}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Sr}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$	
Correct formulae and balancing	(1)		
	ALLOW multiples	(1)	
State symbols	If no other mark awarded, ALLOW lonic equation given as $\mathrm{O}^{2-}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{H} \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$		

Question	Acceptable Answers	Reject	Mark
12(e)	$\mathrm{SrC}_{2} \mathrm{O}_{4}$ with or without working scores 3 marks empirical formula $\mathrm{SrC}_{2} \mathrm{O}_{4}$ ALLOW symbols in any order ALLOW use of 87.7 instead of 87.6 ALLOW TE for MP2 and 3, if one slip in MP1 or MP2	If all $\mathrm{A}_{\mathrm{r}} / \%$, scores (0) overall If all \%/atomic number, scores (0) overall Incorrect symbol(s)	3

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (b)}$	Atoms with the same number of protons $\mathbf{(1)}$ IGNORE same number of electrons (but) different numbers of neutrons IGNORE (1) IGNement(s) with References to atomic number / of protons" mass number / 'nucleons' / JUST 'atoms of the same element'	2	"Elember

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (c) (i)}$	Electron gun / high-speed electrons / high-energy electrons / fast-moving electrons / bombardment with electrons	Just 'electrons' / 'Highly-charged' electrons	$\mathbf{2}$
	Knock-out / remove electron(s) (1)		
IGNORE References to ionizing / forming ions / just equations such as Rb(g) \rightarrow Rb $^{+}\left(\right.$g) + e $^{-}$/ other stages in the process of mass spectrometry			

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
13(c)(ii)	[FIRST, check the answer on the answer line IF answer $=85.6$ award (3) marks] 1st mark: $85 \times 2.5+87 \times 1$ OR $\begin{equation*} 85 \times 71.4+87 \times 28.6 \tag{1} \end{equation*}$ 2nd mark: $\div 3.5$ (can $\div 7$ if ratio given as $5: 2$) OR $\div 100$ ALLOW TE using incorrect \% abundances or ratios 3rd mark - stand alone for correct rounding (TE only if value calculated is between 85 and 87) (= 85.57, but 'accurate' answer depends on rounding) Final answer rounded to 85.6 (ie 1 dp) Ignore units even if incorrect. (1) NOTE 85.5 without working scores (0)		3

Question Number	Acceptable Answers		Reject	Mark
13(d)	(Left-hand box) Delocalised electron(s) BOTH these words needed (Right-hand box) Positive ion(s) / cation(s) / Rb ${ }^{+}$ ALLOW metal ion(s)	(1) (1)	```Just 'electrons' 'Negatively- charged ions' 'nuclei' / 'nucleus' / 'positive atoms' 'positively-charged lattice'```	2

(Total for Question 13 = 12 marks)

