Isotopes, Mass Spec & RAM/ RMM ## **Question Paper** | Level | International A Level | |------------|----------------------------------| | Subject | Chemistry | | Exam Board | Edexcel | | Topic | The Core Principles of Chemistry | | Sub Topic | Isotopes, Mass Spec & RAM/RMM | | Booklet | Question Paper | Time Allowed: 59 minutes Score: /49 Percentage: /100 #### **Grade Boundaries:** | A* | Α | В | С | D | Е | U | |------|--------|-----|-------|-------|-----|------| | >85% | '77.5% | 70% | 62.5% | 57.5% | 45% | <45% | 1 Which row in the table shows the number of protons, neutrons and electrons in a fluoride ion, F⁻? Use the Periodic Table as a source of data. | | Protons | Neutrons | Electrons | |------------|---------|----------|-----------| | ⊠ A | 8 | 9 | 9 | | ⋈ B | 9 | 9 | 10 | | ⊠ C | 9 | 10 | 9 | | ⊠ D | 9 | 10 | 10 | (Total for Question 1 = 1 mark) 2 A sample of oxygen contains the isotopes ¹⁶O, ¹⁷O, ¹⁸O. How many peaks would there be for the O_2^+ ions in the mass spectrum of this sample of oxygen? - **■ B** 5 - **D** 9 (Total for Question 2 = 1 mark) | 3 | lons a | re separated in the mass spectrometer by | | |---|------------|---|---------------------------------| | | ■ A | a vacuum pump. | | | | ⊠ B | a magnetic field. | | | | | an ionization chamber. | | | | ■ D | electron bombardment. | | | _ | | | (Total for Question 3 = 1 mark) | | | | | | | 4 | Which | of the following contains one mole of neutrons? | | | | ⋈ A | 1 g of ¹ ₁ H | | | | ⋈ B | 1 g of ¹² ₆ C | | | | ⊠ C | 2 g of ²⁴ ₁₂ Mg | | | | ⊠ D | 2 g of ²² ₁₀ Ne | | | | | | (Total for Question 4 = 1 mark) | | Which | of the following species has 50 neutrons? | |----------------|--| | ⊠ A | ⁵⁰ ₂₃ V | | | ⁸⁶ ₃₇ Rb ⁻ | | | | | | $^{91}_{40}$ Zr ⁺ | | | (Total for Question 5 = 1 mark) | | | (Total for Question 3 – 1 mark) | | Which | of the following statements is correct about all isotopes of an element? They have | | ⊠ A | the same mass number. | | ⊠ B | the same number of neutrons. | | | more protons than neutrons. | | □ D | the same electronic configuration. | | | (Total for Question 6 = 1 mark) | | | | | | ement rhenium has two naturally-occurring isotopes, ¹⁸⁵ Re and ¹⁸⁷ Re. The re atomic mass of rhenium is 186.2. | | From 1 | this information, the percentage abundances of these two isotopes are | | ⋈ A | 12% ¹⁸⁵ Re and 88% ¹⁸⁷ Re | | | 105 . 107 | | \mathbb{X} B | 40% ¹⁸⁵ Re and 60% ¹⁸⁷ Re | | | 40% ¹⁸⁵ Re and 60% ¹⁸⁷ Re
60% ¹⁸⁵ Re and 40% ¹⁸⁷ Re | | ⊠ C | | | ⊠ C | 60% ¹⁸⁵ Re and 40% ¹⁸⁷ Re | | ⊠ C | 60% ¹⁸⁵ Re and 40% ¹⁸⁷ Re
88% ¹⁸⁵ Re and 12% ¹⁸⁷ Re | | | A B C D The el relativ | - 8 Which of the following ions would be deflected **least** in a mass spectrometer? - B ³⁵Cl²⁺ - C 37CI+ (Total for Question 8 = 1 mark) **9** The mass spectrum of an element is shown below. Relative abundance Mass/charge ratio The relative atomic mass of the element is - **■ B** 69.8 (Total for Question 9 = 1 mark) | 10 | In a n | nass spectrometer, positive ions are accelerated by | |----|------------|---| | | ⊠ A | bombarding them with fast-moving electrons. | | | ⊠ B | bombarding them with fast-moving protons. | | | ⊠ C | passing them between charged plates. | | | ⋈ D | passing them through a magnetic field. | | | | (Total for Question 10 – 1 mark) | | 11 | | | uestion is about isotopes, and the use of mass spectrometry to detect their ce and measure their abundance. | | |----|-----|-------|--|--------------| | | (a) | Boı | ron has two naturally occurring isotopes, ¹⁰ B and ¹¹ B. | | | | | (i) | A sample of boron contained 13.9% of isotope ¹⁰ B and 86.1% of isotope ¹¹ B. Calculate the relative atomic mass of boron in this sample. Give your answer to three significant figures. | (2) | | | | | | | | | | | | | | | | (ii) | Complete the following definition of relative atomic mass. | (1) | | | | | The relative atomic mass is the weighted mean mass of an atom of an element | | | | | | | | | | | (iii) | Boron-12 is a short-lived radioactive isotope.
Name the subatomic particles in an atom of boron-12 and give the number of e | each.
(2) | (1) | |-----------| | | | ct
(1) | | | | | | (2) | | | | | | | | | | | (c) A student sketched the mass spectrum of chlorine gas which contained 75% of the ³⁵Cl isotope and 25% of the ³⁷Cl isotope. (i) Identify and correct the **two** errors made by the student in this sketch. (2) Error 1 Correction 1 Error 2 Correction 2 (ii) Give the formula of the ion responsible for the peak with m/e = 74, showing the isotope(s) present. (1) (Total for Question 11 = 12 marks) | 12 (a) | The relative atomic masses of elements can be determined using a mass spe | ectrometer. | |---------------|---|-------------| | | (i) Define the term relative atomic mass . | (-) | | | | (3) | (ii) Describe fully how positive ions are formed from gaseous atoms in a | | | | (ii) Describe fully how positive ions are formed from gaseous atoms in a mass spectrometer. | 4-1 | | | | (2) | | | | (2) | | | | (2) | | | | (2) | | | | (2) | | | | (2) | | | | (2) | | | | (2) | (iii) The following data were obtained from the mass spectrum of a sample of strontium. | Mass / charge ratio | % abundance | |---------------------|-------------| | 84.0 | 0.56 | | 86.0 | 9.86 | | 87.0 | 7.02 | | 88.0 | 82.56 | Calculate the relative atomic mass of strontium in this sample. Give your answer to **three** significant figures. (2) (b) In which block of the Periodic Table is strontium found? (1) | (c) Draw the dot and cros | s diagram for strontiu | ım chloride. | | | |-----------------------------------|-------------------------|----------------------|------------------------|------------| | Show outer electrons | only. | | (| 2) | | | | | (| ∠) | (d) A solution of strontiur | n nitrate was prepare | d from strontium oxi | de and dilute nitric a | icid. | | Write the equation for | this reaction, includi | ng state symbols. | | | | | | | (| 2) | (e) A compound of stront by mass. | ium contains 49.9% s | trontium, 13.7% carb | on and 36.4% oxyge | en, | | Calculate the empirica | ıl formula for this com | npound. | | | | [Use relative atomic m | asses: Sr = 87.6, C = 1 | 2.0, O = 16.0] | (| 3) | | | | | (| 3) | **13** A model of the atom describes a nucleus containing protons and neutrons surrounded by electrons in energy levels. | | | | (3) | |--|--|-------------------------------|-------------| | Sub-atomic particle | Relative mass | Relative charg | ge | | proton | | | | | neutron | | | | | electron | | | | | b) State, in terms of the sub-atomic | particles present, the mea | ning of the term isoto | pes.
(2) | | c) The element rubidium exists as the control of th | | mass spectrometer. | | | | | | | | (ii) In a sample of rubidium, the i | isotope ⁸⁵ Rb has an abunda | ance 2.5 times greater | | | than that of ⁸⁷ Rb. Calculate the relative atomic answer to one decimal place. | | mple. Give your | (3) | | | | | | | | | | | | | Relative atomic mass = | | | (d) The diagram below illustrates a model of the metallic bonding in rubidium. Write appropriate labels in the two empty boxes in order to complete the diagram. (2) (Total for Question 13 = 12 marks)