Isotopes, Mass Spec & RAM/ RMM

Question Paper

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	The Core Principles of Chemistry
Sub Topic	Isotopes, Mass Spec & RAM/RMM
Booklet	Question Paper

Time Allowed: 59 minutes

Score: /49

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 Which row in the table shows the number of protons, neutrons and electrons in a

fluoride ion, F⁻?

Use the Periodic Table as a source of data.

	Protons	Neutrons	Electrons
⊠ A	8	9	9
⋈ B	9	9	10
⊠ C	9	10	9
⊠ D	9	10	10

(Total for Question 1 = 1 mark)

2 A sample of oxygen contains the isotopes ¹⁶O, ¹⁷O, ¹⁸O.

How many peaks would there be for the O_2^+ ions in the mass spectrum of this sample of oxygen?

- **■ B** 5
- **D** 9

(Total for Question 2 = 1 mark)

3	lons a	re separated in the mass spectrometer by	
	■ A	a vacuum pump.	
	⊠ B	a magnetic field.	
		an ionization chamber.	
	■ D	electron bombardment.	
_			(Total for Question 3 = 1 mark)
4	Which	of the following contains one mole of neutrons?	
	⋈ A	1 g of ¹ ₁ H	
	⋈ B	1 g of ¹² ₆ C	
	⊠ C	2 g of ²⁴ ₁₂ Mg	
	⊠ D	2 g of ²² ₁₀ Ne	
			(Total for Question 4 = 1 mark)

Which	of the following species has 50 neutrons?
⊠ A	⁵⁰ ₂₃ V
	⁸⁶ ₃₇ Rb ⁻
	$^{91}_{40}$ Zr ⁺
	(Total for Question 5 = 1 mark)
	(Total for Question 3 – 1 mark)
Which	of the following statements is correct about all isotopes of an element? They have
⊠ A	the same mass number.
⊠ B	the same number of neutrons.
	more protons than neutrons.
□ D	the same electronic configuration.
	(Total for Question 6 = 1 mark)
	ement rhenium has two naturally-occurring isotopes, ¹⁸⁵ Re and ¹⁸⁷ Re. The re atomic mass of rhenium is 186.2.
From 1	this information, the percentage abundances of these two isotopes are
⋈ A	12% ¹⁸⁵ Re and 88% ¹⁸⁷ Re
	105 . 107
\mathbb{X} B	40% ¹⁸⁵ Re and 60% ¹⁸⁷ Re
	40% ¹⁸⁵ Re and 60% ¹⁸⁷ Re 60% ¹⁸⁵ Re and 40% ¹⁸⁷ Re
⊠ C	
⊠ C	60% ¹⁸⁵ Re and 40% ¹⁸⁷ Re
⊠ C	60% ¹⁸⁵ Re and 40% ¹⁸⁷ Re 88% ¹⁸⁵ Re and 12% ¹⁸⁷ Re
	A B C D The el relativ

- 8 Which of the following ions would be deflected **least** in a mass spectrometer?

 - B ³⁵Cl²⁺
 - C 37CI+

(Total for Question 8 = 1 mark)

9 The mass spectrum of an element is shown below.

Relative abundance

Mass/charge ratio

The relative atomic mass of the element is

- **■ B** 69.8

(Total for Question 9 = 1 mark)

10	In a n	nass spectrometer, positive ions are accelerated by
	⊠ A	bombarding them with fast-moving electrons.
	⊠ B	bombarding them with fast-moving protons.
	⊠ C	passing them between charged plates.
	⋈ D	passing them through a magnetic field.
		(Total for Question 10 – 1 mark)

11			uestion is about isotopes, and the use of mass spectrometry to detect their ce and measure their abundance.	
	(a)	Boı	ron has two naturally occurring isotopes, ¹⁰ B and ¹¹ B.	
		(i)	A sample of boron contained 13.9% of isotope ¹⁰ B and 86.1% of isotope ¹¹ B. Calculate the relative atomic mass of boron in this sample. Give your answer to three significant figures.	(2)
		(ii)	Complete the following definition of relative atomic mass.	(1)
			The relative atomic mass is the weighted mean mass of an atom of an element	
		(iii)	Boron-12 is a short-lived radioactive isotope. Name the subatomic particles in an atom of boron-12 and give the number of e	each. (2)

(1)
ct (1)
(2)

(c) A student sketched the mass spectrum of chlorine gas which contained 75% of the ³⁵Cl isotope and 25% of the ³⁷Cl isotope.

(i) Identify and correct the **two** errors made by the student in this sketch.

(2)

Error 1

Correction 1

Error 2

Correction 2

(ii) Give the formula of the ion responsible for the peak with m/e = 74, showing the isotope(s) present.

(1)

(Total for Question 11 = 12 marks)

12 (a)	The relative atomic masses of elements can be determined using a mass spe	ectrometer.
	(i) Define the term relative atomic mass .	(-)
		(3)
	(ii) Describe fully how positive ions are formed from gaseous atoms in a	
	(ii) Describe fully how positive ions are formed from gaseous atoms in a mass spectrometer.	4-1
		(2)
		(2)
		(2)
		(2)
		(2)
		(2)
		(2)
		(2)

(iii) The following data were obtained from the mass spectrum of a sample of strontium.

Mass / charge ratio	% abundance
84.0	0.56
86.0	9.86
87.0	7.02
88.0	82.56

Calculate the relative atomic mass of strontium in this sample.

Give your answer to **three** significant figures.

(2)

(b) In which block of the Periodic Table is strontium found?

(1)

(c) Draw the dot and cros	s diagram for strontiu	ım chloride.		
Show outer electrons	only.		(2)
			(∠)
(d) A solution of strontiur	n nitrate was prepare	d from strontium oxi	de and dilute nitric a	icid.
Write the equation for	this reaction, includi	ng state symbols.		
			(2)
(e) A compound of stront by mass.	ium contains 49.9% s	trontium, 13.7% carb	on and 36.4% oxyge	en,
Calculate the empirica	ıl formula for this com	npound.		
[Use relative atomic m	asses: Sr = 87.6, C = 1	2.0, O = 16.0]	(3)
			(3)

13 A model of the atom describes a nucleus containing protons and neutrons surrounded by electrons in energy levels.

			(3)
Sub-atomic particle	Relative mass	Relative charg	ge
proton			
neutron			
electron			
b) State, in terms of the sub-atomic	particles present, the mea	ning of the term isoto	pes. (2)
c) The element rubidium exists as the control of th		mass spectrometer.	
(ii) In a sample of rubidium, the i	isotope ⁸⁵ Rb has an abunda	ance 2.5 times greater	
than that of ⁸⁷ Rb. Calculate the relative atomic answer to one decimal place.		mple. Give your	(3)
	Relative atomic mass =		

(d) The diagram below illustrates a model of the metallic bonding in rubidium.

Write appropriate labels in the two empty boxes in order to complete the diagram.

(2)

(Total for Question 13 = 12 marks)