www.igexams.com

Periodicity \& Trends

Mark Scheme 1

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	The Core Principles of Chemistry
Sub Topic	Periodicity \& Trends
Booklet	Mark Scheme 1

Time Allowed:	76 minutes
Score:	$/ 63$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$

www.igexams.com

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$	C		I
	Incorrect Answers: A - Melting temperatures increase across the period with a peak at group IV not Group I B - Melting temperatures increase across the period with a peak at group IV not Group III D- Melting temperatures increase across the period with a peak at group IV not Group V		

Question Number	Correct Answer	Reject	Mark
2	C		1
Question Number	Correct Answer	Reject	Mark
3(a)	A		1
Question Number	Correct Answer	Reject	Mark
3(b)	D		1

Question Number	Correct Answer	Mark
$\mathbf{4}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{5}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{6}$	A	$\mathbf{1}$

www.igexams.com

Question Number	Correct Answer	Mark
$\mathbf{7}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{8}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{9}$	A	$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0 (a)}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0 (b)}$	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}(\mathbf{c})$	C		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1}$	A		1

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 2 (a)}$	The energy required ALLOW energy / enthalpy change/endothermic (1)	Energy given out / energy produced/ exothermic	3
	to remove one electron from each atom in one mole of atoms ALLOW to remove one mole of electrons from one mole of atoms Or to produce one mole of singly charged positive ions from one mole of atoms (1)	(all species) in the gaseous state (1) IGNORE equation even if correct	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 2 (b)}$	$\mathrm{Li}^{+}(\mathrm{g}) \rightarrow \quad \mathrm{Li}^{2+}(\mathrm{g})+\mathrm{e}^{(-)}$ OR $\mathrm{Li}^{+}(\mathrm{g})-\mathrm{e}^{(-)} \rightarrow \quad \mathrm{Li}^{2+}(\mathrm{g})$	1	
	IGNORE missing (g) if gaseous is in part (a) DO NOT penalise missing gaseous state symbol if omission of gaseous is already penalised in part (a)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 2 (c)}$	Helium only has two electrons/ Helium does not have a third electron to lose		1
	IGNORE Helium only has two valence electrons/ only has two electrons in its outer shell		

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
12(d)	Marking point 1 One cross for electron 1 significantly below those already present (1) Marking point 2 One cross for electron 2 slightly below the three crosses already present (1) Marking point 3 Crosses for electrons 6 to 9 on an approximately straight line upwards continuing from electrons 3 to 5 Marking point 4 Cross for electron 10 significantly above the cross for electron 9 and cross for electron 11 slightly above the cross for electron 10 (1) Mark Independently IGNORE Lines drawn between crosses	'big' increase anywhere between crosses 6 to 9 'big' increase from cross 10 to cross 11	4

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{1 2 (e)}$	Any three from	Reference to molecule, max 2	3		
	Increased shielding (by inner electron shells) / greater repulsion between inner shell electrons (1) More shells (1) Greater distance from nucleus (to outermost electron) / increased (atomic) radius (1) These outweigh the increased nuclear attraction from the greater number of protons (1)	Ionic radius		\quad	
:---					

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 2 (f)}$	(For sulfur) the outermost electron is paired in the p orbital (1)	4 p	2
	Repulsion between (paired) electrons (reduces ionisation energy) (1)	If no correct reference to sulfur then allow one mark for phosphorus (atom) having more stable p^{3} /half-filled p sub-shell	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 2 (g)}$	(lonisation energy value) Any value in the range of (+)520-700 (kJ mol 1) [Actual value (+)578] ALLOW Any range within the values given above (1)	Higher The outermost electron for aluminium is in a \mathbf{p} orbital / subshell (1) level/ shell	2 l
Which has higher energy (than the s orbital)	ALLOW is further away from the nucleus (and requires less energy to remove) than the 3s electrons (of aluminium) Or Shielded by the 3s electrons (1)	ACCEPT Reverse arguments	

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
13(a)(i)	Arrows correct ALLOW half-headed arrows/ 3p electrons all pointing downwards Labels correct OR $\begin{equation*} 2 p_{x}, 2 p_{y}, 2 p_{z} \text { and } 3 p_{x}, 3 p_{y}, 3 p_{z} \tag{1} \end{equation*}$ IGNORE numbers as superscripts		2

Question Number	Acceptable Answers	Reject	Mark
13(a)(ii)	Mark independently First mark (idea of paired electrons in S) In sulfur: spin-pairing has occurred (in the 3p orbital / sub-shell)/ there are paired electrons (in a 3p orbital / sub-shell) OR there are two electrons in the same (3p) orbital / there is a full (3p) orbital Note - Just stating $3 \mathrm{p}^{4}$ does not get this mark Second mark (idea of repulsion) (Resultant increase in) repulsion (allows electron to be removed more easily) Note - if no correct reference to sulfur ALLOW Phosphorus has a half-filled sub-shell which is (more) stable IGNORE any reference to nuclear attraction / atomic radius / shielding	Sub-shell / shell	2

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (a) (i i i)}$	$\mathrm{P}^{2+}(\mathrm{g}) \rightarrow \mathrm{P}^{3+}(\mathrm{g})+\mathrm{e}^{(-)}$	Incorrect symbol for first mark only	$\mathbf{2}$
	ALLOW $\mathrm{P}^{2+}(\mathrm{g})-\mathrm{e}^{(-)} \rightarrow \mathrm{P}^{3+}(\mathrm{g})$ ALLOW $+2 /+3$ for 2+/3+ or additional electrons provided the equation balances		
Correct symbols	(1)		
Both (g)	(1)		
Mark independently IGNORE state symbol on the electron / IE in equation			

Question Number	Acceptable Answers	Reject	Mark
13(b)(i)	Mark independently First mark (number of shells) N has fewer (electron) shells than P ALLOW The outer electron is in a shell closer to the nucleus in N OR In N the atomic radius/size is less Second mark (shielding) (Outermost electron in N) has less shielding Third mark (attraction) (Even though N has a lower nuclear charge/ fewer protons) (there is a) greater (force of) attraction between the nucleus and the (outer) electron/ greater effective nuclear charge OR outer electron is held more strongly by the nucleus IGNORE N has a greater charge density ALLOW Reverse argument for phosphorus / trend down the group	Mention of molecules Just ‘lower atomic number' / ' N is smaller than P^{\prime} Ionic radius N has a higher nuclear charge than P	3

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (b) (i i)}$		$\mathbf{2}$	
	ALLOW all dots, all crosses or any other symbol for the electrons First Mark Three pairs of electrons between the nitrogen atoms ALLOW Two or three of the 3 pairs of electrons circled to show sharing as part of triple bond Second Mark Lone pair on each nitrogen atom ALLOW 2 unpaired electrons		

Question Number	Acceptable Answers	Reject	Mark
13(c)	Correct answer with or without working scores both marks $\begin{align*} \text { Number of moles } & =\underline{24.8} \\ & 31.0 \times 4 \tag{1}\\ & =0.2(00)(\mathrm{mol}) \end{align*}$ Number of molecules of P_{4} $\begin{align*} & =0.2 \times 6.02 \times 10^{23} \\ & =1.204 \times 10^{23} / 1.20 \times 10^{23} / 1.2 \times 10^{23} \tag{1} \end{align*}$ TE on number of moles IGNORE SF except 1SF		2

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
14(a)	$\mathrm{F}(\mathrm{~g}) \rightarrow \mathrm{F}^{+}(\mathrm{g})+\mathrm{e}^{(-)}$ OR $\begin{equation*} F(g)-e^{(-)} \rightarrow F^{+}(g) \tag{1} \end{equation*}$ Species State symbols IGNORE Any state symbols on electrons 2nd mark is dependent on the first NOTE: $\mathrm{F}(\mathrm{~g})+\mathrm{e}^{(-)} \rightarrow \mathrm{F}^{+}(\mathrm{g})+2 \mathrm{e}^{(-)}$ Use of 'FI' max (1)	Electron affinity equation (0) overall Equations with $\mathrm{F}_{2}(\mathrm{~g})$ score ($\mathbf{0}$) overall	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 4 * (b)}$	1 mark: Number of protons increases / increasing nuclear charge / increasing effective nuclear charge	3	
	IGNORE Just 'the atomic number increases'	(1)	
2nd mark: Same shielding / same number of (occupied) shells / electron removed from the same shell / atomic radius decreases	'Shielding increases' (0) for 2nd mark		
3rd mark: Greater (electrostatic) attraction between nucleus / protons and (outermost) electron	(1)		

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
14(c)*(i)	For aluminium 1st mark: (Electron lost from) (3)p-subshell / (3)p-orbital ALLOW Correct electron configuration for Al : $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$ or [Ne] $3 s^{2} 3 p^{1}$ or drawn as electrons-inboxes NOTE First mark must refer to aluminium 2nd mark: at higher energy / further from the nucleus / (more) shielded (by 3s) OR Magnesium electron is at lower energy / closer to the nucleus / less shielded IGNORE References to stability of $3 s^{2}$ or full sorbitals / full s sub-shell in Mg	Mention of $\mathbf{2 p}$, no $1^{\text {st }}$ mark	2

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
14(c)* ${ }^{\text {(ii) }}$	For sulfur 1st mark: (Electron lost from a) pair of electrons / an orbital with electrons (spin-) paired / a full (p) orbital ALLOW Mention of (3) p^{4} OR Correct electron configuration for $S: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$ or $[\mathrm{Ne}] 3 s^{2} 3 p^{4}$ or drawn as electrons-inboxes 2nd mark: (increase in) repulsion (allows e^{-}to be removed more easily) If no correct reference to Sulfur, then allow one mark for P (atom) has half-filled p sub-shell / p^{3} (arrangement) is stable.		2

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 4 (d) \text { (ii) }}$	(Na) (AI) (Si) (P) (S) giant (giant) giant giant molecular molecular ALLOW 'giant molecular' for Si ALLOW 'simple molecular' for P and/or S Five correct (2) Four correct (1)		$\mathbf{2}$

Question	Acceptable Answers	Reject	Mark
14(d)(iii)	(Na) (Al) (Si) (P) high (high) high \mathbf{X} low low All four must be correct IGNORE Any word written over \mathbf{X} in the Si box		1

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 4 (e) (i)}$	$\left(\frac{2.76}{23.0}\right)=0.12(0)(\mathrm{mol})$		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
14(e)(ii)	Moles $\mathrm{H}_{2}=1 / 2 \times \mathrm{mol} \mathrm{Na}$ Volume $\mathrm{H}_{2}=0.06(0) \times 24$ $\begin{equation*} =1.44\left(\mathrm{dm}^{3}\right) \tag{1} \end{equation*}$ ALLOW ECF from moles of Na in (e)(i) ALLOW Both marks if answer given $1440 \mathbf{c m}^{3}$ Correct answer, no working scores (2) NOTE: The following answers score (1) mark with or without working $2.88\left(\mathrm{dm}^{3}\right) / 2880 \mathrm{~cm}^{3}$ $5.76\left(\mathrm{dm}^{3}\right) / 5760 \mathrm{~cm}^{3}$ However, check as 2.88 could score 2 as a TE of 0.24 mol from (e)(i) IGNORE SF except 1 SF		2

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
14(e)(iii)	1st mark: Moles $\mathrm{NaOH}=$ moles of Na Can be implied by use of value from (e)(i) 2nd mark: $\begin{equation*} \left(\frac{0.12}{0.500}\right)=0.24(0)\left(\mathrm{mol} \mathrm{dm}^{-3}\right) \tag{1} \end{equation*}$ ALLOW TE from moles of Na in (e)(i) Correct answer, no working scores (2) IGNORE SF except 1 SF NOTE: TE from first mark to second mark only if answer from (e)(i) has been used in some way e.g. answer to (e)(i) $\times 2$ would not score mark 1, but could then be used to score mark 2 as a TE	No $2^{\text {nd }}$ mark if give wrong units, e.g "mol/dm ${ }^{-3 "}$ "dm ${ }^{3} / \mathrm{mol}^{\prime}$	2

(Total for Question 14 = 19 marks)

