Periodicity & Trends

Mark Scheme 1

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Торіс	The Core Principles of Chemistry
Sub Topic	Periodicity & Trends
Booklet	Mark Scheme 1

Time Allowed:	76 minutes
Score:	/63
Percentage:	/100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question Number	Correct Answer	Reject	Mark
1	С		1
	Incorrect Answers: A – Melting temperatures increase across the period with a peak at group IV not Group I B - Melting temperatures increase across the period with a peak at group IV not Group III D- Melting temperatures increase across the period with a peak at group IV not Group V		

Question Number	Correct Answer	Reject	Mark
2	С		1

Question Number	Correct Answer	Reject	Mark
3 (a)	А		1

Question Number	Correct Answer	Reject	Mark
3(b)	D		1

Question Number	Correct Answer	Mark
4	С	1

Question Number	Correct Answer	Mark
5	В	1

Question Number	Correct Answer	Mark
6	A	1

Question Number	Correct Answer	Mark
7	В	1

Question Number	Correct Answer	Mark
8	С	1

Question Number	Correct Answer	Mark
9	Α	1

Question Number	Correct Answer	Reject	Mark
10(a)	В		1

Question Number	Correct Answer	Reject	Mark
10(b)	A		1

Question Number	Correct Answer	Reject	Mark
10 (c)	С		1

Question Number	Correct Answer	Reject	Mark
11	Α		1

Question Number	Acceptable Answers	Reject	Mark
12(a)	The energy required ALLOW energy / enthalpy change/endothermic (1)	Energy given out / energy produced/ exothermic	3
	to remove one electron from each atom in one mole of atoms ALLOW to remove one mole of electrons from one mole of atoms Or to produce one mole of singly charged positive ions from one mole of atoms (1)		
	(all species) in the gaseous state (1)		
	IGNORE equation even if correct		

Question Number	Acceptable Answers	Reject	Mark
1 2 (b)	$\begin{array}{rcl} \text{Li}^{+}(g) \rightarrow & \text{Li}^{2+}(g) + e^{(-)} \\ \text{OR} \\ \text{Li}^{+}(g) - e^{(-)} \rightarrow & \text{Li}^{2+}(g) \\ \end{array}$ $\begin{array}{rcl} \text{IGNORE missing (g) if gaseous is in part (a)} \\ \text{DO NOT penalise missing gaseous state} \\ \text{symbol if omission of gaseous is already} \\ \text{penalised in part (a)} \end{array}$		1

Question Number	Acceptable Answers	Reject	Mark
12(c)	Helium only has two electrons/ Helium does not have a third electron to lose IGNORE Helium only has two valence electrons/ only has two electrons in its outer shell		1

Question	Acceptable Answers	Reject	Mark
Number			
12(d)	Marking point 1 One cross for electron 1 significantly below those already present (1)		4
	Marking point 2 One cross for electron 2 slightly below the three crosses already present (1) Marking point 3 Crosses for electrons 6 to 9 on an approximately	'big' increase anywhere between	
	straight line upwards continuing from electrons 3 to 5 (1)	crosses 6 to 9	
	Marking point 4 Cross for electron 10 significantly above the cross for electron 9 and cross for electron 11 slightly above the cross for electron 10 (1) Mark Independently IGNORE	'big' increase from cross 10 to cross 11	
	Lines drawn between crosses		
	Example		
	Log (ionisation energy) M2 × M3-Gevenl Thcrease M1 1 2 3 4 5 6 7 8 9 10 11 Number of electrons removed		
	Number of electrons removed		

Question Number	Acceptable Answers	Reject	Mark
12(e)	Any three from Increased shielding (by inner electron shells) / greater repulsion between inner shell electrons (1) More shells (1) Greater distance from nucleus (to outermost electron) / increased (atomic) radius (1) These outweigh the increased nuclear attraction from the greater number of protons (1)	Reference to molecule, max 2	3

Question Number	Acceptable Answers	Reject	Mark
12(f)	(For sulfur) the outermost electron is paired in the p orbital (1)	4p	2
	Repulsion between (paired) electrons (reduces ionisation energy) (1)		
	If no correct reference to sulfur then allow one mark for phosphorus (atom) having more stable p ³ /half-filled p sub-shell		

Question Number	Acceptable Answers	Reject	Mark
12(g)	 (Ionisation energy value) Any value in the range of (+)520-700 (kJ mol⁻¹) [Actual value (+)578] ALLOW Any range within the values given above (1) The outermost electron for aluminium is in a p orbital / subshell (1) Which has higher energy (than the s orbital) ALLOW is further away from the nucleus (and requires less energy to remove) than the 3s electrons (of aluminium) Or Shielded by the 3s electrons (1) ACCEPT Reverse arguments 	2p Higher energy Ievel/shell	3

(Total for Question 12 = 17 marks)

Question Number	Acceptable Answers	Reject	Mark
13(a)(i)	$(\overbrace{15}) \overbrace{25} \overbrace{27} \overbrace{27} \overbrace{35} \overbrace{39} \overbrace{39}$ Arrows correct ALLOW half-headed arrows/ 3p electrons all pointing downwards (1) Labels correct OR $2p_x$, $2p_y$, $2p_z$ and $3p_x$, $3p_y$, $3p_z$ (1) IGNORE numbers as superscripts		2

Question Number	Acceptable Answers	Reject	Mark
1 3 (a)(ii)	Mark independently		2
	First mark (idea of paired electrons in S) In sulfur: spin-pairing has occurred (in the 3p orbital / sub-shell)/ there are paired electrons (in a 3p orbital / sub-shell)		
	OR		
	there are two electrons in the same (3p) orbital / there is a full (3p) orbital (1)	Sub-shell / shell	
	Note – Just stating 3p ⁴ does not get this mark		
	Second mark (idea of repulsion) (Resultant increase in) repulsion (allows electron to be removed more easily)(1)		
	Note – if no correct reference to sulfur		
	ALLOW Phosphorus has a half-filled sub-shell which is (more) stable (1)		
	IGNORE any reference to nuclear attraction / atomic radius / shielding		

Question Number	Acceptable Answers	Reject	Mark
13(a)(iii)	$P^{2+}(g) \rightarrow P^{3+}(g) + e^{(-)}$ ALLOW $P^{2+}(g) - e^{(-)} \rightarrow P^{3+}(g)$ ALLOW +2/+3 for 2+/3+ or additional electrons provided the equation balances	Incorrect symbol for first mark only	2
	Correct symbols (1)	
	Both (g) (1		
	Mark independently		
	IGNORE state symbol on the electron / IE in equation		

Question	Acceptable Answers	Reject	Mark
13(b)(i)	Mark independently		3
			•
	First mark (number of shells)	Mention of	
	N has fewer (electron) shells than P	molecules	
	ALLOW	atomic number	
	The outer electron is in a shell closer to the	/ 'N is smaller	
	OR	than P	
	In N the atomic radius/size is less (1)	Ionic radius	
	Second mark (shielding)		
	(Outermost electron in N) has less shielding		
	Third mark (attraction)		
	(Even though N has a lower nuclear charge/	N has a higher	
	(there is a) greater (force of) attraction	than P	
	between the nucleus and the (outer)		
	electron/ greater effective nuclear charge		
	OR outer electron is held more strongly by the		
	nucleus (1)		
	IGNORE IN has a greater charge density		
	ALLOW		
	Reverse argument for phosphorus / trend down the group		

Question Number	Acceptable Answers	R	eject	Mark
13(b)(ii)	*NIN:			2
	OR			
	N MAN			
	ALLOW all dots, all crosses or any other symbol for the electrons	or		
	First Mark Three pairs of electrons between the nitrogen atoms			
	ALLOW Two or three of the 3 pairs of electrons circled to show sharing as part of triple bond (1)		
	Second Mark Lone pair on each nitrogen atom			
	ALLOW 2 unpaired electrons (*	1)		

Question	Acceptable Answers	Reject	Mark
13(c)	Correct answer with or without working scores both marks		2
	Number of moles = $\frac{24.8}{31.0 \times 4}$ (1) = 0.2(00) (mol)		
	Number of molecules of P_4 = 0.2 x 6.02 x 10 ²³ = 1.204 x 10 ²³ / 1.20 x 10 ²³ / 1.2 x 10 ²³ (1)		
	TE on number of moles IGNORE SF except 1SF		

(Total for Question 13 = 13 marks)

Question Number	Acceptable Answers		Reject	Mark
14(a)	$F(g) \rightarrow F^{+}(g) + e^{(-)}$ OR $F(g) - e^{(-)} \rightarrow F^{+}(g)$		Electron affinity equation (0) overall	2
	Species	(1)	Equations with F ₂ (g) score (0) overall	
	State symbols IGNORE Any state symbols on electrons	(1)		
		(1)		
	2nd mark is dependent on the fir NOTE:	st		
	$F(g) + e^{(-)} \rightarrow F^+(g) + 2e^{(-)}$			
	Use of `FI' max (1)			

Question Number	Acceptable Answers	Reject	Mark
14*(b)	1 mark: Number of protons increases / increasing nuclear charge / increasing effective nuclear charge		3
	Just 'the atomic number increases' (1)		
	2nd mark: Same shielding / same number of (occupied) shells / electron removed from the same shell / atomic radius decreases	'Shielding increases' (0) for 2 nd mark	
	(1)		
	3rd mark: Greater (electrostatic) attraction between nucleus / protons and (outermost) electron (1)		

Question Number	Acceptable Answers	Reject	Mark
14(c)*(i)	For aluminium 1st mark: (Electron lost from) (3) p -subshell / (3) p -orbital	Mention of 2 p, no 1 st mark	2
	ALLOW Correct electron configuration for Al: 1s ² 2s ² 2p ⁶ 3s ² 3p ¹ or [Ne]3s ² 3p ¹ or drawn as electrons-in-		
	(1)		
	NOTE First mark must refer to aluminium		
	2nd mark: at higher energy / further from the nucleus / (more) shielded (by 3s)		
	OR		
	Magnesium electron is at lower energy / closer to the nucleus / less shielded		
	(1)		
	IGNORE References to stability of 3s ² or full s- orbitals / full s sub-shell in Mg		

Question Number	Acceptable Answers	Reject	Mark
14(c)*(ii)	For sulfur 1st mark: (Electron lost from a) pair of electrons / an orbital with electrons (spin-) paired / a full (p) orbital		2
	Mention of $(3)p^4$ OR Correct electron configuration for S:1s ² 2s ² 2p ⁶ 3s ² 3p ⁴ or [Ne]3s ² 3p ⁴ or drawn as electrons-in- boxes (1)		
	2nd mark: (increase in) repulsion (allows e ⁻ to be removed more easily) (1)		
	If no correct reference to Sulfur, then allow one mark for P (atom) has half-filled p sub-shell / p ³ (arrangement) is stable.		

Question Number	Acceptable Answers	Reject	Mark
14(d)(i)	 (AI) (Si) (P) (S) high high low low Four correct (2) Three correct (1) 		2

Question Number	Acceptable Answers	Reject	Mark
14(d)(ii)	 (Na) (Al) (Si) (P) (S) giant (giant) giant giant molecular molecular ALLOW 'giant molecular' for Si ALLOW 'simple molecular' for P and/or S Five correct (2) Four correct (1) 		2

Question Number	Acceptable Answers	Reject	Mark
14(d)(iii)	<pre>(Na) (Al) (Si) (P) (S) high (high) high X low low All four must be correct IGNORE Any word written over X in the Si box</pre>		1

Question Number	Acceptable Answers	Reject	Mark
14(e)(i)	$\left(\frac{2.76}{23.0}\right) = 0.12(0) \text{ (mol)}$		1

Question Number	Acceptable Answers		Reject	Mark
14(e)(ii)	Moles $H_2 = \frac{1}{2} \times \text{mol Na}$	(1)		2
	Volume $H_2 = 0.06(0) \times 24$ = 1.44 (dm ³)	(1)		
	ALLOW ECF from moles of Na in (e)(i)			
	ALLOW			
	Both marks if answer given 1440 c	m ³		
	Correct answer, no working scores (2) NOTE:			
	The following answers score (1 mark)		
	with or without working 2.88 (dm ³) / 2880 cm ³ 5.76 (dm ³) / 5760 cm ³			
	However, check as 2.88 could scor as a TE of 0.24 mol from (e)(i)	e 2		
	IGNORE SF except 1 SF			

Question Number	Acceptable Answers	Reject	Mark
Question Number 14(e)(iii)	Acceptable Answers 1st mark: Moles NaOH = moles of Na (1) Can be implied by use of value from (e)(i) 2nd mark: (<u>0.12</u>) = 0.24(0) (mol dm ⁻³) 0.500 (1) ALLOW TE from moles of Na in (e)(i) Correct answer, no working scores (2) IGNORE SF except 1 SF	Reject No 2 nd mark if give wrong units, e.g "mol/dm ⁻³ " "dm ³ /mol"	Mark 2
	NOTE: TE from first mark to second mark only if answer from (e)(i) has been used in some way e.g. answer to (e)(i) \times 2 would not score mark 1, but could then be used to score mark 2 as a TE		

(Total for Question 14 = 19 marks)