www.igexams.com

Periodicity \& Trends

Mark Scheme 2

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	The Core Principles of Chemistry
Sub Topic	Periodicity \& Trends
Booklet	Mark Scheme 2

Time Allowed:	$\mathbf{7 2}$ minutes
Score:	$/ 60$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
1(a)(i)	$\begin{array}{ll} \mathrm{Mg}^{+}(\mathrm{g}) & \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})+\mathrm{e}^{(-)} \\ \mathrm{OR}^{+}(\mathrm{g})-\mathrm{e}^{(-)} \rightarrow \mathrm{Mg}^{2+}(\mathrm{g}) \\ \mathrm{Mg}^{+}(\mathrm{g} \\ \mathrm{OR}^{+}(\mathrm{g})+\mathrm{e}^{(-)} \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{e}^{(-)} \end{array}$ 1st mark Correct species for reactants and products 2nd mark Correct state symbols This mark can only be awarded if first mark has already been awarded. NOTE Award state symbols mark if ' $\mathrm{X}^{+}(\mathrm{g})^{\prime}$ OR 'MG' used instead of ' $M g$ ' $\begin{aligned} & \mathrm{Mg}(\mathrm{~g}) \\ & \text { scores (0) } \end{aligned} \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{e}^{(-)}$	"MG" for first mark	2

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
1(a)*(ii)	Any TWO from: Electron (in Mg^{+}) is being removed from a positive ion Electron being removed is closer to the nucleus (in Mg^{+}) / Mg^{+}is smaller (than Mg) Proton: electron ratio greater (in Mg^{+}) / remaining e^{-}more tightly held (in Mg^{+}) Greater (force of) attraction between nucleus and (outermost) electron (in Mg^{+}) Electron repulsion is less in Mg^{+}(than Mg) IGNORE References to "effective nuclear charge (ENC)" / high charge-density in Mg^{+}/ references to shielding	" Mg^{+}has more protons than Mg" scores (0) overall Electron is being removed from a new shell/different shell / 2nd shell scores (0) overall	2

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{1 (a) (i i i)}$	Any value in range 5000 to $9000\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$		$\mathbf{1}$		
NOTE					
Actual value is $7730\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$				\quad	
:---					

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
1(b)(i)	(Phosphorus) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{3}$ ALLOW $\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}, \mathrm{p}_{\mathrm{z}}$ notation / upper case (Sulfur) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$ ALLOW $\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}, \mathrm{p}_{\mathrm{z}}$ notation / upper case (1) ALLOW Noble gas core: [Ne] for $1 s^{2} 2 s^{2} 2 p^{6}$		2
Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	1st mark - idea of paired e^{-}in S In sulfur, spin-pairing has occurred / two electrons in the same orbital / paired e^{-} Note: Just $3 p^{4}$ stated for S does not gain this mark. ALLOW an 'electrons-in-box' diagram, showing two electrons in the same orbital 2nd mark - idea of repulsion (resultant increase in) repulsion ALLOW Just phosphorus has a half-filled subshell which is more stable (max (1))		2

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (a) (i)}$	$14 \mathrm{p}, 14 \mathrm{e}, 15 \mathrm{n}$ All correct		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (a) (i i)}$	$\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}$ Fully correct		
	ALLOW Subscripts rather than superscripts SPD in capitals $2 p_{x}{ }^{2} 2 p_{y}{ }^{2} 2 p_{z}^{2}$ and $3 p_{x}{ }^{1} 3 p_{y}{ }^{1}$ for $2 p$ and $3 p$ IGNORE $1 s^{2}$ written again before $2 s^{2}$		

www.igexams.com

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
*2(b)(ii)	LLOW reverse arguments in each case PENALISE Omission of 'atoms' or 'ions' / mis-use of 'atom' or 'ion' ONCE only where relevant ANY TWO FROM: - Magnesium atoms / magnesium ions are smaller (than sodium atoms/ions) NOTE: Allow symbols (e.g. Mg or Mg^{2+}) - Magnesium ions are Mg^{2+} whereas sodium ions are Na^{+} OR Mg^{2+} /magnesium ions have a higher charge (density) than $\mathrm{Na}^{+} /$sodium ions IGNORE References to (effective) nuclear charge - Magnesium has more delocalised electrons (than sodium) /magnesium has more electrons (than sodium) in its sea of electrons - Attraction between positive ions and (delocalised) electrons is stronger in magnesium (than in sodium) IGNORE References to JUST 'more energy needed' (to break bonds in magnesium)	Attraction "between nucleus and (delocalised) electrons" Mention of "intermolecular forces" or "molecules" scores (0) overall for this question	2

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
2(c)	st mark: More protons / increasing nuclear charge / increasing effective nuclear charge IGNORE 'increasing atomic number' $\mathbf{2}^{\text {nd }}$ mark: Same shielding (of outermost electrons) / same number of (occupied) shells	'Increasing charge densities'	
OR	(Outermost) electrons in same shell OR Greater attraction between nucleus and (outermost) electrons	(1)	(Outermost) electrons in same sub-shell

Question Number	Acceptable Answers	Reject	Mark
2(d)	Outer shell of Si with total of 8 electrons Each Si electron sharing with one electron from an outer shell of 7 in chlorine Comment Do not penalise if dots and crosses are reversed MAX 1 if all dots or all crosses		2

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (e) (i)}$	I: level of cross between Na and Mg (actual value 578) Si: level of cross anywhere above Al and Mg (actual value 789) Both needed for the mark		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (e) (i i)}$: (3p) electron/e- (lost is) from higher energy (level) / (more) shielded (by 3s electrons) / further from nucleus / from p orbital / from 3p p_{x}	If e- lost from a 2p orbital / if states that Al has higher ionization energy than Mg	Si: more protons / extra proton / greater nuclear charge (compared to Al)

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (a) (i)}$	Penalise use of chlorine once only in Q21(a)(i), (ii) and (iii) IGNORE lone pairs of electrons, even if incorrect in Q21(a)(i), (ii) and (iii) ALLOW one slip in the formula of the element if it is correctly given elsewhere in the answer e.g B for Br $\mathrm{Br}_{2} \rightarrow \mathrm{Br} \bullet+\mathrm{Br} \bullet /$ $\mathrm{Br}_{2} \rightarrow 2 \mathrm{Br} \bullet$	Br	$\mathbf{1}$
Ignore position of dot Ignore state symbols and curly arrows even if incorrect			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ $\mathbf{(a) (i i)}$	$\mathrm{Br}_{2} \rightarrow \mathrm{Br}^{+}+\mathrm{Br}^{-}$	$\mathbf{\delta}^{+} / \mathbf{\delta}^{-}$for the + or -	$\mathbf{1}$
Ignore state symbols and curly arrows even if incorrect			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (a)(iii)	(free radical) Br• NOTE: No TE, except Cl•	Br	$\mathbf{2}$
	Penalise omission of the dot only once in (a)(i) and (a)(iii) (electrophile) $\mathbf{B r}^{+}$		
NOTE: No TE, except Cl			

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
3 (b)(i)	 Isomers can be in any order ALLOW skeletal or structural formulae	Any branched-chain isomers	3

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 3 \\ & \hline(\mathrm{~b})(\mathrm{ii}) \end{aligned}$	Corrosive / toxic / poisonous Allow correct symbols for corrosive or toxic / poisonous IGNORE harmful / dangerous / irritant / acidic / volatile / any references to state of HBr IGNORE Any precautions taken, EXCEPT those related to flammability	Flammable / 'naked flames'	1

www.igexams.com

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (c) (i)}$	$\mathrm{CH}_{4}+\mathrm{F}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{~F}+\mathrm{HF}$ IGNORE state symbols, even if incorrect	Cl_{2}	$\mathbf{1}$

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 3 \\ & \text { (c)(iii) } \end{aligned}$	Shared pair of electrons shown The remaining six electrons on each F atom NOTE Can be dots or crosses - only total number of electrons matters Circles not required IGNORE Two inner-shell electrons ALLOW 'FI' or F symbol missing		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$	'Repulsion between electrons' scores	Just repulsion between bonding / shared electrons (c)(iv)	$\mathbf{2}$
	BUT 'Repulsion between lone pairs (of electrons)' scores (2) ALLOW 'Non-bonding electrons' for lone pairs		

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 ~ (c) (v)}$	UV (light) / (sun) light / heat / energy required to break Cl-Cl bond OR UV (light) / (sun) light / heat / energy required to form Cl•		$\mathbf{1}$
	OR F—F requires less energy to break OR F-F requires less energy to form F• IGNORE Just F_{2} more reactive (than Cl 2)		
Just F-F bond is weaker (than CI-CI)	Just F-F bond energy is lower (than CI-CI)		

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
3 (d)	Mark independently		3
	First mark:		
	For both arrows in initial step	Half-arrow(s)	
	Allow upper arrow as in diagram or directly to Br atom	Incorrect polarities Full-charges on Br_{2}	
	Second mark:		
	Carbocation intermediate		
	Third mark:	Half-arrow(s) $\boldsymbol{\delta}^{-}$instead of the full - sign	
	Arrow from anywhere on the bromide ion to the C or to the + sign on the intermediate	on the Br^{-}	

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (e) (i)}$			

Question Number	Acceptable Answers	Reject	Mark
3(e)(ii)	EITHER Rotation around C-C bond (in product molecule)		$\mathbf{1}$
OR Double bond is broken so rotation (is now possible) ALLOW Same carbocation / intermediate formed (so product is the same)	IGNORE Comments about optical isomerism		

(Total for Question 3 = 23 marks)

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark	
4(b)	(region)	(no. of electrons)		3
	(a d-orbital)	$\mathbf{2}$		
	(a p sub-shell)	$\mathbf{6}$	(1)	
	(the third shell)	$\mathbf{1 8}$	(1)	
			(1)	

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
4(c)	First mark: BOTH 2s and 2p labelled	$2 p^{6}$	2
	ALLOW $2 s^{2}$ and $2 p^{4}$		
	(1)		
	Second mark: ALL eight e^{-}shown correctly		
	$\begin{array}{c\|c} \text { energy } & 2 \mathrm{~s} \sqrt{\uparrow} \\ (1 \mathrm{~s}) \text { 㛈 } \\ \hline \end{array}$		
	ALLOW Half-arrows or full arrows for each electron		
	Paired arrows in any one of the $2 p$ orbitals		
	NOTE Single arrows must be orientated in same direction		
	Paired arrows must have opposite spins		

www.igexams.com

Question	Acceptable Answers	Reject	Mark
4(d)(i)	First mark:		3
	Makes mention of energy/enthalpy/(heat) energy/heat (change/required)	"Energy given out..." for first mark	
	AND		
	to remove an electron		
	Second mark:		
	one mole/1 mol		
	Third mark:		
	Makes mention of gaseous atom(s)	Just 'gaseous element'/ 'gaseous substance'	
	ALTERNATIVE ANSWER		
	Energy change per mole / $\mathrm{kJ} \mathrm{mol}^{-1}$ for (1)		
	$\begin{equation*} X(\mathbf{g}) \rightarrow X^{+}(\mathbf{g})+\mathrm{e}^{(-)} \tag{2} \end{equation*}$		
	One mark for species One mark for correct state symbols		
	Mark independently		
	IGNORE any references to standard conditions		

www.igexams.com

Question	Acceptable Answers	Reject	Mark
4(d)(ii)	$\mathrm{O}^{2+}(\mathrm{g})-\mathrm{e}^{-} \rightarrow \mathrm{O}^{3+}(\mathrm{g})$ OR $\mathrm{O}^{2+}(\mathrm{g}) \rightarrow \mathrm{O}^{3+}(\mathrm{g})+\mathrm{e}^{-}$ All species and balancing correct State symbols correct $2^{\text {nd }}$ mark is dependent on $1^{\text {st }}$ mark ALLOW ' e^{\prime} for ' e^{-}' IGNORE	Reverse equation scores (0) overall	2

Question	Acceptable Answers	Reject	Mark
4(d)(iii)	First mark:		2
	Big 'jump' / large increase		
	Second mark:		
	between 6th and 7th (IE)	Any other ionization jumps	
	OR after the $\mathbf{6}^{\text {th }}$		
	OR to the $7^{\text {th }}$		
	OR from 13327 to 71337		
	OR of 58010		
	IGNORE		
	Additional jump identified between 4th and 5th (IE) if justified in terms of a change of sub-shell		
	OR		
	Additional jump identified between 4th and 5th (IE) if justified in terms of NOT being a change of shell		
	(1)		

(Total for Question 4 = 14 marks)

