Periodicity & Trends

Mark Scheme 2

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Торіс	The Core Principles of Chemistry
Sub Topic	Periodicity & Trends
Booklet	Mark Scheme 2

Time Allowed:	72 minutes
Score:	/60
Percentage:	/100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question Number	Acceptable Answers	Reject	Mark
1(a)(i)	$\begin{array}{rcl} Mg^+(g) & \rightarrow & Mg^{2+}(g) \ + \ e^{(-)} \\ OR \\ Mg^+(g) - e^{(-)} & \rightarrow & Mg^{2+}(g) \\ OR \\ Mg^+(g) + e^{(-)} & \rightarrow & Mg^{2+}(g) \ + \ 2e^{(-)} \\ \hline \mbox{1st mark} \\ Correct species for reactants and \\ products \\ \hline \mbox{1} \\ \mbox{2nd mark} \\ Correct state symbols \\ \hline \mbox{This mark can only be awarded if} \\ \mbox{first mark has already been awarded.} \\ \hline \end{tabular}$	"MG" for first mark	2
	NOTE Award state symbols mark if 'X ⁺ (g)' OR 'MG' used instead of 'Mg' Mg(g) \rightarrow Mg ²⁺ (g) + 2e ⁽⁻⁾ scores (0)		

Question Number	Acceptable Answers	Reject	Mark
1(a)*(ii)	Any TWO from: Electron (in Mg ⁺) is being removed from a positive ion (1) Electron being removed is closer to the nucleus (in Mg ⁺) / Mg ⁺ is smaller (than Mg) (1) Proton: electron ratio greater (in Mg ⁺) / remaining e ⁻ more tightly held (in Mg ⁺) (1)	"Mg ⁺ has more protons than Mg" scores (0) overall Electron is being removed from a new shell/different shell / 2nd shell scores (0) overall	2
	Greater (force of) attraction between nucleus and (outermost) electron (in Mg ⁺) (1) Electron repulsion is less in Mg ⁺ (than Mg) (1) IGNORE References to "effective nuclear charge (ENC)" / high charge-density in Mg ⁺ / references to shielding		

Question Number	Acceptable Answers	Reject	Mark
1(a)(iii)	Any value in range 5000 to 9000 (kJ mol ⁻¹)		1
	NOTE Actual value is 7730 (kJ mol ⁻¹)		

Question Number	Acceptable Answers		Reject	Mark
1(b)(i)	(Phosphorus) $1s^2 2s^2 2p^6 3s^2 3p^3$			2
	ALLOW p_x , p_y , p_z notation / upper case			
	(Sulfur) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁴	(1)		
	ALLOW p_x , p_y , p_z notation / upper case			
	ALLOW Noble gas core: [Ne] for $1s^2 2s^2 2p^6$	(1)		

Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	 1st mark – idea of paired e⁻ in S In sulfur, spin-pairing has occurred / two electrons in the same orbital / paired e⁻ Note: Just 3p⁴ stated for S does not gain this mark. ALLOW an 'electrons-in-box' diagram, showing two electrons in the same orbital 		2
	(1) 2nd mark – idea of repulsion (resultant increase in) repulsion (1) ALLOW Just phosphorus has a half-filled sub- shell which is more stable (max (1))		

(Total for Question 1 = 9 marks)

Question Number	Acceptable Answers	Reject	Mark
2(a)(i)	14p,14e,15n All correct		1

Question Number	Acceptable Answers	Reject	Mark
2(a)(ii)	(1s ²) 2s ² 2p ⁶ 3s ² 3p ² Fully correct ALLOW Subscripts rather than superscripts SPD in capitals $2p_x^2 2p_y^2 2p_z^2$ and $3p_x^1 3p_y^1$ for 2p and 3p IGNORE 1s ² written again before 2s ²		1

Question Number	Acceptable Answers	Reject	Mark
*2(b)(i)	 First mark: Structure of silicon Silicon is giant covalent / 	Silicon "giant ionic"	
	giant atomic / giant molecular / macromolecular / giant structure / giant lattice (1)	/ silicon [•] `giant metallic"	
	IGNORE JUST `GIANT' OR JUST `LATTICE'		
	Second mark: Structure of phosphorus		
	 Small molecules / simple molecules / P₄ molecules / molecular covalent / simple covalent / molecular 		
	IGNORE JUST 'SIMPLE' /'SIMPLE STRUCTURE'		
	Third mark: Interactions overcome on melting		
	вотн		
	 (Breaking strong) covalent bonds in silicon 	Intermolecular forces broken in silicon	
	AND		
	 Between phosphorus molecules: weak forces / (weak) intermolecular forces / (weak) London forces / (weak) van der Waals' forces / (weak) dispersion forces / (weak) induced-dipole forces (1) 	Covalent bonds broken in phosphorus / weak bonds between phosphorus atoms / weak covalent bonds	
	[ALLOW "weak bonds" IF implies between phosphorus molecules]		3

Question Number	Acceptable Answers	Reject	Mark
*2(b)(ii)	LLOW reverse arguments in each case		
	PENALISE		
	Omission of `atoms' or `ions' / mis-use of `atom' or `ion' ONCE only where relevant		
	ANY TWO FROM:		
	 Magnesium atoms / magnesium ions are smaller (than sodium atoms/ions) (1) NOTE: Allow symbols (e.g. Mg or Mg²⁺) 		
	 Magnesium ions are Mg²⁺ whereas sodium ions are Na⁺ OR Mg²⁺/magnesium ions have a higher charge (density) than Na⁺/sodium ions (1) 		
	IGNORE References to (effective) nuclear charge		
	 Magnesium has more delocalised electrons (than sodium) /magnesium has more electrons (than sodium) in its sea of electrons (1) 		
	 Attraction between positive ions and (delocalised) electrons is stronger in magnesium (than in sodium) (1) 	Attraction "between nucleus and (delocalised) electrons"	
	References to JUST 'more energy needed' (to break bonds in magnesium)	Mention of "intermolecular forces" or "molecules" scores (0) overall for this question	2

Question Number	Acceptable Answers	Reject	Mark
2(c)	st mark:		
	More protons / increasing nuclear charge / increasing effective nuclear charge (1)	'Increasing charge densities'	
	IGNORE `increasing atomic number'		
	2 nd mark:		
	Same shielding (of outermost electrons) / same number of (occupied) shells		
	OR		
	(Outermost) electrons in same shell	(Outermost) electrons in same	
	OR	sub-shell	
	Greater attraction between nucleus and (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)		2

Question	Acceptable Answers	Reject	Mark
Number			
2(d)			
	°CL:		
	6 X		
	~ × S. × C.		
	63 × 6		
	·CL··		
	••		
	Outer shell of Si with total of 8 electrons		
	(1)		
	Each Si electron sharing with one electron		
	from an outer shell of 7 in chlorine (1)		
	Comment		
	Do not penalise if dots and crosses are		
	reversed		2
	MAX 1 if all dots or all crosses		2

Question Number	Acceptable Answers	Reject	Mark
2(e)(i)	 I: level of cross between Na and Mg (actual value 578) Si: level of cross anywhere above Al <u>and</u> Mg (actual value 789) 		_
	Both needed for the mark		1

Question Number	Acceptable Answers	Reject	Mark
2(e)(ii)	: (3p) electron/e ⁻ (lost is) from higher energy (level) / (more) shielded (by 3s electrons) / further from nucleus / from p orbital / from $3p_x$ (1)	If e [−] lost from a 2p orbital / if states that Al has higher ionization energy than Mg	
	Si: more protons / extra proton / greater nuclear charge (compared to Al) (1)		2

Total for Question 2 = 14 marks

Question Number	Acceptable Answers	Reject	Mark
3 (a)(i)	Penalise use of chlorine once only in Q21(a)(i), (ii) and (iii) IGNORE lone pairs of electrons, even if incorrect in Q21(a)(i), (ii) and (iii) ALLOW one slip in the formula of the element if it is correctly given elsewhere in the answer e.g B for Br $Br_2 \rightarrow Br \bullet + Br \bullet / Br_2 \rightarrow 2Br \bullet$ Ignore position of dot Ignore state symbols and curly arrows even if incorrect	Br	1

Question Number	Acceptable Answers	Reject	Mark
3 (a)(ii)	$Br_2 \rightarrow Br^+ + Br^-$ Ignore state symbols and curly arrows even if incorrect	δ^+/δ^- for the + or –	1

Question Number	Acceptable Answers	Reject	Mark
3 (a)(iii)	(free radical) Br•	Br	2
	NOTE:		
	No TE, except Cl•		
	(1)		
	Penalise omission of the dot only once in (a)(i) and (a)(ii)		
	(electrophile) Br ⁺		
	NOTE:		
	No TE, except CI ⁺ (1)		

Question	Acceptable Answers Reject Ma	ark
Number		
3 (b)(i)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3
	(1) Н Н Н Н Н Н	
	 H Br H H H H	
	(1)	
	 H H Br H H H	
	(1)	
	Isomers can be in any order	
	ALLOW skeletal or structural formulae	

Question Number	Acceptable Answers	Reject	Mark
3 (b)(ii)	Corrosive / toxic / poisonous	Flammable / 'naked flames'	1
	Allow correct symbols for corrosive or		
	toxic / poisono <u>us</u>		
	IGNORE harmful / dangerous / irritant / acidic / volatile / any references to state of HBr		
	IGNORE Any precautions taken, EXCEPT those related to flammability		

Question	Acceptable Answers	Reject	Mark
Number			
3 (b)(iii)	First mark Calculation of the $C_6H_{13}Br M_r$ value and the total of the product Mr		2
	EXPECTED 164.9 AND 245.8		
	ALLOW		
	165 AND 246 (1)		
	Second mark		
	EXPECTED		
	<u>164.9</u> (x 100%) 245.8		
	= 67.08706265(%)		
	= 67.1(%) to 3 s.f.		
	ALLOW		
	<u>165</u> (x 100%) 246		
	= 67.07317073 (%)		
	= 67.1(%) to 3 s.f.		
	ALLOW TE from any incorrect M _r value(s) provided answer is not greater than 100%		
	(1)		
	Answer MUST be rounded correctly to 3 s.f. for the second mark		
	Correct answer with no working (2)		

Question	Acceptable Answers	Reject	Mark
Number			
3 (c)(i)	$CH_4 + F_2 \rightarrow CH_3F + HF$ IGNORE state symbols, even if	Cl ₂	1
	incorrect	"Fl" if used more than once	

Question Number	Acceptable Answers	Reject	Mark
3 (c)(ii)	NOTE Allow reverse argument throughout 1st Mark Fluorine / F (atom is) smaller (than a Cl atom)	F ₂ / `fluorine molecule '	2
	(1)		
	2 nd Mark		
	Any ONE of:-		
	(so expect) F—F bond to be shorter (than the CI—Cl bond)	Mention of `Intermolecular forces' (no 2nd mark)	
	OR F—F bonding electrons / bond pair / / shared pair closer to (both) nuclei		
	OR (so) attraction between nuclei and bonding electrons / bond pair / shared pair expected to be stronger (1)		
	IGNORE Any references to the strengths of the F-F and/or CI-CI bonds		
	Any references to the `repulsion between nuclei'		
	Any references to 'shielding' / 'Charge density' / 'Electronegativity' / outer electrons		

Question Number	Acceptable Answers	Reject	Mark
3 (c)(iii)			2
	Shared pair of electrons shown (1)		
	The remaining six electrons on each F atom		
	(1)		
	NOTE Can be dots or crosses – only total number of electrons matters		
	Circles not required		
	IGNORE Two inner-shell electrons		
	ALLOW `FI' or F symbol missing		

Question Number	Acceptable Answers	Reject	Mark
3 (c)(iv)	'Repulsion between electrons' scores (1) BUT	Just repulsion between bonding / shared electrons	2
	'Repulsion between lone pairs (of electrons)' scores (2) ALLOW		

Question Number	Acceptable Answers	Reject	Mark
3 (c)(v)	UV (light) / (sun) light / heat / energy required to break CI—CI bond		1
	OR UV (light) / (sun) light / heat / energy required to form Cl•		
	OR F—F requires less energy to break OR F—F requires less energy to form F•		
	IGNORE Just F_2 more reactive (than Cl_2)		
	Just F–F bond is weaker (than Cl–Cl)		
	Just F—F bond energy is lower (than CI—CI)		

Question Number	Acceptable Answers	Reject	Mark
3 (d)	Mark independently $H_{H_5C_2} \xrightarrow{H_{C_2}} C_{C_2H_5} \xrightarrow{H_{SC_2}} H_{SC_2} \xrightarrow{H_{SC_2}} C_{C_2H_5} \xrightarrow{H_{SC_2}} C_{C_2H_5}$ Br Br Br Br Br Br Br		3
	For both arrows in initial step	Half-arrow(s)	
	Allow upper arrow as in diagram or directly to Br atom (1)	Incorrect polarities Full-charges on Br ₂	
	Second mark:		
	Carbocation intermediate (1)		
	Third mark:	Half-arrow(s) δ⁻ instead of the full – sign	
	Arrow from anywhere on the bromide ion to the C or to the + sign on the intermediate (1)	on the Br ⁻	
	Lone pair(s) on Br ⁻ not required		

Question Number	Acceptable Answers	Reject	Mark
3(e)(i)	H C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5 Diagram clearly shows that H atoms are diagonal to each other in the <i>E</i> - isomer/correct relative positions of hydrogen atoms and ethyl groups ALLOW Chalatal on diaplayed formula		1
	C_2H_5 OR C_2H_5 H C_2H_5 C_2H_5 Diagram clearly shows that H atoms are diagonal to each other in the <i>E</i> - isomer/correct relative positions of hydrogen atoms and ethyl groups ALLOW Skeletal or displayed formula		

Question Number	Acceptable Answers	Reject	Mark
3(e)(ii)	EITHER		1
	Rotation around C—C bond (in product molecule)		
	OR Double bond is broken so rotation (is now possible)		
	ALLOW Same carbocation / intermediate formed (so product is the same)		
	IGNORE Comments about optical isomerism		

(Total for Question 3 = 23 marks)

Question	Acceptable Answers	Reject	Mark
Number			2
4(a)	s-orbital (s-orbital) Circle drawn ALLOW		2
	Concentric circles drawn (1)		
	(p-orbital)		
	Figure of `8' / `dumb-bell' drawn		
	NOTE: p-orbital can be drawn along any axis (axis does not have to be shown) (1)		
	ALLOW If one, two or three p-orbitals of correct shapes are shown		
	If overlapping orbitals are shown of correct shape in both cases, award (1) mark		

Question Number	Acceptable Answe	ers		Reject	Mark
4(b)	(region)	(no. of electro	ons)		3
	(a d-orbital)	2	(1)		
	(a p sub-shell)	6	(1)		
	(the third shell)	18	(1)		

Question Number	Acceptable Answers	Reject	Mark
4(c)	First mark: BOTH 2s and 2p labelled ALLOW 2s ² and 2p ⁴ (1)	2p ⁶	2
	energy 2s (1s) (1s)		
	ALLOW Half-arrows or full arrows for each electron Paired arrows in any one of the 2p orbitals NOTE Single arrows must be orientated in same direction Paired arrows must have opposite spins		

Question	Acceptable Answers	Reject	Mark
Number			
4(d)(i)	First mark:		3
	Makes mention of energy/enthalpy/(heat) energy/heat (change/required)	"Energy given out " for first mark	
	AND		
	to remove an electron (1)		
	Second mark:		
	one mole/1 mol (1)		
	Third mark:		
	Makes mention of gaseous atom(s) (1)	Just `gaseous element'/ `gaseous substance'	
	ALTERNATIVE ANSWER		
	Energy change per mole / kJ mol ⁻¹ for (1)		
	$X(g) \to X^{+}(g) + e^{(-)}$ (2)		
	One mark for species One mark for correct state symbols		
	Mark independently		
	IGNORE any references to standard conditions		

Question Number	Acceptable Answers		Reject	Mark
4(d)(ii)	$O^{2+}(g) - e^- \rightarrow O^{3+}(g)$		Reverse equation scores (0)	2
	OR			
	$O^{2+}(g) \rightarrow O^{3+}(g) + e^{-}$			
	All species and balancing correct	(1)		
		(1))	
	State symbols correct	(1)		
	2 nd mark is dependent on 1 st mark			
	ALLOW			
	`e' for `e ⁻ '			
	IGNORE			
	(g) the e^-			

Question Number	Acceptable Answers	Reject	Mark
4(d)(iii)	First mark: Big `jump' / large increase (1)		2
	Second mark:		
	between 6th and 7th (IE)	Any other ionization jumps	
	OR after the 6th	mentioned	
	OR to the 7th		
	OR from 13327 to 71337		
	OR of 58010		
	IGNORE		
	Additional jump identified between 4th and 5th (IE) if justified in terms of a change of sub-shell		
	OR		
	Additional jump identified between 4th and 5th (IE) if justified in terms of NOT being a change of shell (1)		

(Total for Question 4 = 14 marks)