Chemical Equilibria

Question Paper

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	Application of Core Principles of Chemistry
Sub Topic	Chemical Equilibria
Booklet	Question Paper

Time Allowed:

30 minutes

Score:

/25

Percentage:

/100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 An aqueous solution contains dichromate(VI) ions, $Cr_2O_7^{2-}$, and chromate(VI) ions, CrO_4^{2-} , in equilibrium. This solution is a pale orange colour.

$$Cr_2O_7^{2-}(aq) + H_2O(I) \rightleftharpoons 2CrO_4^{2-}(aq) + 2H^+(aq)$$

orange yellow

What would be seen when a few drops of concentrated sodium hydroxide solution are added to the equilibrium mixture?

■ A No visible change.

XA

 \mathbf{B}

 \times C

⋈ D

- **B** The mixture turns green.
- **D** The mixture turns yellow.

(Total for Question 1 = 1 mark)

2 The following system was allowed to reach equilibrium at 450 °C.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $\Delta H = -197 \text{ kJ mol}^{-1}$

How would a decrease in pressure and an increase in temperature affect the equilibrium position?

Shift in equilibrium position with a decrease in pressure	Shift in equilibrium position with an increase in temperature
left	left
left	right
right	left
right	right

(Total for Question 2 = 1 mark)

3	3 The chlorate(I) ion, ClO ⁻ (aq), is formed when chlorine dissolves in water.									
	$Cl_2(aq) + H_2O(I) \rightleftharpoons 2H^+(aq) + CI^-(aq) + CIO^-(aq)$									
	The concentration of chlorate(I) ions could be increased by the addition of									
	A solid potassium hydroxide.									
	■ B concentrated hydrochloric acid.									
	X	C	solid sodium chloride.							
	X	D	solid potassium sulfate.							
			(Total for Question 3 = 1 mark)							
4	Со	nsic	ler the following equilibrium.							
			$PCI_3(g) + CI_2(g) \rightleftharpoons PCI_5(g)$ $\Delta H = -92.5 \text{ kJ mol}^{-1}$							
			ch of the following would both the stated changes increase the amount of the ct, PCI ₅ , present at equilibrium?							
	A Decreasing temperature and decreasing pressure.									
	■ B Decreasing temperature and increasing pressure.									
	☑ C Increasing temperature and increasing pressure.									
	X	D	Increasing temperature and decreasing pressure.							
			(Total for Question 4 = 1 mark)							
_	Con	cida	er the following simplified equilibrium for an indicator, HIn.							
3	COII	Side								
	HIn(aq) ⇌ H⁺(aq) + In⁻(aq) yellow purple									
	Addition of a few drops of sodium carbonate solution would									
	X	A	make the colour of the equilibrium mixture turn purple and then yellow.							
	X	В	make the colour of the equilibrium mixture paler.							
		c	make the equilibrium mixture more yellow.							
		D	make the equilibrium mixture more purple.							
		U								
_			(Total for Question 5 = 1 mark)							

5	The fo	llowing equilibrium was established with all three substances present.
		$ICI(I) + CI_2(g) \rightleftharpoons ICI_3(s)$
		brown pale green yellow
	What v	would be the effect of increasing the pressure on this equilibrium system?
		No change.
	⊠ B	An increase in the amount of the brown liquid.
	⊠ C	An increase in the amounts of the brown liquid and the pale green gas.
	■ D	An increase in the amount of the yellow solid.
		(Total for Question 6 = 1 mark)
7		ontact Process for the production of sulfuric acid, there is a step in which dioxide is oxidized to sulfur trioxide as shown below.
		$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g) \Delta H = -198 \text{ kJ mol}^{-1}$
	A high	yield is obtained with the following conditions:
	•	2 atm and 700 K
	•	1:1 mole ratio of sulfur dioxide and oxygen
	•	catalyst vanadium(V) oxide, V ₂ O ₅
		parison with the conditions given above, which of the following would shift uilibrium position to the right?
		Lowering the pressure.
	⊠ B	Increasing the temperature.
	⊠ C	Increasing the excess of oxygen.
	■ D	Using a more finely divided catalyst.
		(Total for Question 7 = 1 mark)

Q	Hydrogen and iodine	nases were mived	at 300°C and	allowed to read	n equilibrium
0	nyurogen and louine	gases were iiliked	at 300 Cand	allowed to react	i equilibrium.

$$H_2(g)$$
 + $I_2(g)$ \rightleftharpoons 2HI(g) $\Delta H = -10 \text{ kJ mol}^{-1}$
Colourless Purple Colourless

- (a) What would you see if the equilibrium mixture was cooled to 250 °C and equilibrium allowed to re-establish?
- ☑ A The mixture goes a darker purple.
- **B** The colour gets lighter.
- ☑ C The mixture goes colourless.
- **D** No visible change.
- (b) The equilibrium mixture at 300°C was compressed in a gas syringe to occupy a smaller volume. What would be seen immediately after this compression?
- A The mixture goes a darker purple.
- ☑ B The colour gets lighter.
- ☑ C The mixture goes colourless.
- D No visible change.

(Total for Question 8 = 2 marks)

(1)

(1)

9 A concentrated solution of 'bromine water' is an orange colour. The following equilibrium exists in this solution.

$$Br_2(aq) + H_2O(I) \rightleftharpoons BrO^-(aq) + Br^-(aq) + 2H^+(aq)$$
Orange

Colourless

What would be the effect, if any, on the colour of the solution, if five drops of dilute sodium hydroxide solution were added to 5 cm³ of the bromine water?

- ☑ A The solution becomes a deeper orange.
- **B** The colour of the solution becomes lighter.
- ☑ C The solution goes colourless.
- **D** No visible change.

(Total for Question 9 = 1 mark)

10	Consid	ler the following equili	orium.							
	$2NO_2(g)$ \longrightarrow $N_2O_4(g)$ Dark brown Colourless									
	If the above equilibrium is initially set up so that the mixture is dark brown, then a gradual decrease in pressure would result in									
	☑ A no visible change.									
	B	a change to yellow.								
	☑ C a change to yellow then colourless.									
	☑ D a change to colourless.									
				(Total for Question 10 = 1 mark)						

11 Poly(propenenitrile) is used in the manufacture of acrylic fibres for clothes. Poly(propenenitrile) is an addition polymer made from propenenitrile.

The structure of propenenitrile is shown.

(a) Give a balanced equation, using displayed formulae, to show the formation of poly(propenenitrile) from propenenitrile.

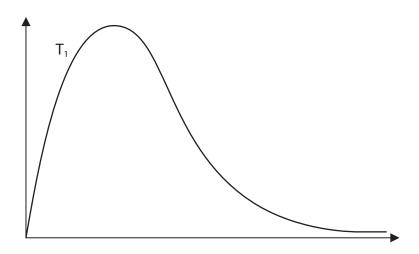
(3)

(b) Why does the reaction in (a) have an atom economy of 100%?

(1)

*(c)	Propenenitrile is manufactured from propene, C_3H_6 , as shown in the following equation.	
	$C_3H_6(g) + NH_3(g) + 1\frac{1}{2}O_2(g) \rightleftharpoons CH_2CHCN(g) + 3H_2O(g)$ $\Delta H = -550 \text{ kJ mg}$	ol ⁻¹
	The process is carried out at a temperature of 450°C and a pressure of 2.5 atm, in the presence of a suitable catalyst.	
	State and explain the effect on the position of equilibrium when each of the following changes is made to these reaction conditions.	
	(i) The temperature is increased.	(2)
	(ii) The pressure is increased.	(2)

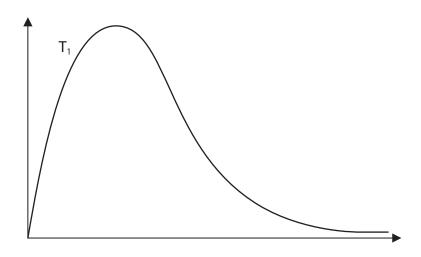
- *(d) Chemical manufacturers also use reaction conditions to control the rates of chemical reactions.
 - (i) The curves in (d)(ii) and (d)(iii) show the distribution of molecular energies at a temperature, T₁.


Label the axes on the diagrams in (d)(ii) and (d)(iii).

(1)

(ii) On the diagram below, draw a curve to show the distribution of molecular energies at a higher temperature, T₂.

Use your diagram, with further labelling as necessary, to explain why the rate of a chemical reaction increases when the temperature is increased.


(3)

•••••	 															

(iii) Use the diagram below, with further labelling as necessary, to explain why the rate of a chemical reaction increases when a catalyst is added at temperature T_1 .

(2)

(Total for Question 11 =	: 14 marks)