www.igexams.com

Group 1 \& 2

Mark Scheme 1

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	Application of Core Principles of Chemistry
Sub Topic	Group 1 \& 2
Booklet	Mark Scheme 1

Time Allowed:	59 minutes
Score:	$/ 49$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	$' 77.5 \%$	70%	62.5%	57.5%	45%	$<45 \%$

www.igexams.com

Question Number	Correct Answer	Mark
$\mathbf{1}$	B	(1)
	Incorrect answers A - solubility of sulfates does not decrease C - solubility of hydroxides does not increase and solubility of hydroxides does not decrease D - solubility of hydroxides does not increase	

Question Number	Correct Answer	Mark
$\mathbf{2}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{3}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{4}$	B	$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{5}$	C		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{6}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{7}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{8}$	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{9}$	C		1

www.igexams.com

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 3}$	C		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 4 (a) (i)}$	Green (flame)	Any other colour in combination with green eg blue-green	(1)
	ALLOW any shade of green eg pale green, apple		

Question	Acceptable Answers	Reject	Mark
14(a)(ii)	Read the whole answer before awarding marks. If no mention of electrons only M3 may be awarded First mark Electrons excited/promoted to a higher energy level/shell (by thermal energy/heat from (Bunsen) flame) IGNORE atom / ion Second mark (Promoted) electrons fall /drop /relax / return to a lower energy level / (sub)shell/ orbital OR Electrons return to ground state ALLOW Electrons drop back down / de-excited IGNORE atom / ion Third mark Emitting (energy in the form of) radiation/ light /photons (in the visible region) ALLOW release / give out for emit IGNORE colour / wavelength / frequency	Just 'electrons excited / promoted' Just 'energy lost' Just 'energy emitted’	(3)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 4 (b) (i)}$	$2 \mathrm{NaNO}_{3} \rightarrow 2 \mathrm{NaNO}_{2}+\mathrm{O}_{2}$		(1)
	OR		
$\mathrm{NaNO}_{3} \rightarrow \mathrm{NaNO}_{2}+1 / 2 \mathrm{O}_{2}$			
OR multiples			
IGNORE state symbols, even if incorrect			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 4 (b) (i i) ~}$	$2 \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{MgO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$	(1)	
	OR $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{MgO}+2 \mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2}$ OR multiples IGNORE State symbols, even if incorrect Water of crystallisation	NOTE If no marks awarded for (b)(i) or (b)(ii), allow 1 mark for all correct products in unbalanced equations in (b)(i) and (b)(ii)	

Question	Acceptable Answers	Reject	Mark
14(c)	First mark - charge Magnesium ion has a greater charge than sodium ion OR Magnesium is Mg^{2+} and sodium is Na^{+} ALLOW magnesium ion has a higher charge density ALLOW Mg have a charge of +2 and Na has a charge of +1 ALLOW mention of atoms Second mark - size Magnesium ion is smaller than sodium ion OR Sodium ion is larger than magnesium ion ALLOW magnesium is smaller than sodium, or reverse argument, if ion is stated for first mark IGNORE atomic radius Third mark - comparison of polarising power Magnesium / Mg^{2+} / cation / smaller ion causes more polarisation / distortion OR Sodium / Na^{+}/ cation / larger ion causes less polarisation / distortion Fourth mark - what is polarised $\mathrm{C}-\mathrm{O}$ bonds / $\mathrm{C}=\mathrm{O}$ bonds ALLOW (Electron cloud in) carbonate (ion) / $\mathrm{CO}_{3}{ }^{2-} /$ anion / negative ion (and therefore magnesium carbonate decomposes more readily) IGNORE magnesium carbonate is more polarised (than sodium carbonate)	$\mathrm{Mg} / \mathrm{Mg}^{2+}$ is distorted $\mathrm{N}-\mathrm{O}$ bonds / $\mathrm{N}=\mathrm{O}$ bonds / nitrate ion / $\mathrm{NO}_{3}{ }^{-}$ Bond between cation and anion is more easily broken	(4)

Question	Acceptable Answers	Reject	Mark
14(d)(i)	Correct answer with no working or an alternative method scores (3) marks $\begin{align*} \text { mol HCl used } & =\frac{16.65 \times 0.105}{1000} \tag{1}\\ & =1.74825 \times 10^{-3} \end{align*}$ $\mathrm{mol} \mathrm{Na} \mathrm{CO}_{3}$ in $25 \mathrm{~cm}^{3}=\frac{1.74825 \times 10^{-3}}{2}$ $\begin{equation*} =8.74125 \times 10^{-4} \tag{1} \end{equation*}$ TE on mol HCl $\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$ in $250 \mathrm{~cm}^{3}$ TE on $\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$ in $25 \mathrm{~cm}^{3}$ $\begin{align*} & =8.74125 \times 10^{-4} \times 10 \\ & =8.74125 \times 10^{-3} \tag{1} \end{align*}$ IGNORE SF except 1 SF	Incorrect rounding or use of 1SF once only in (d)(i) and (d)(ii)	(3)

Question Number	Acceptable Answers	Reject	Mark
14(d)(ii)	Molar mass $\begin{align*} \mathrm{M}_{\mathrm{r}} \text { of } \mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O} & =2.50 \\ & 8.74125 \times 10^{-3} \\ & =286(.0) \tag{1} \end{align*}$ Value of x $\begin{equation*} x=\frac{286-106}{18}=10 \tag{1} \end{equation*}$ Both marks TE on 21(d)(i) but do not award M2 if M_{r} of hydrate < 106 Alternative method Value of x Mass $\mathrm{Na}_{2} \mathrm{CO}_{3}=8.74125 \times 10^{-3} \times 106=0.92657(\mathrm{~g})$ Mass $\mathrm{H}_{2} \mathrm{O}=2.5-0.92657=1.57343$ (g) Moles $\mathrm{H}_{2} \mathrm{O}=1.57343 / 18=0.087413$ Ratio $\mathrm{Na}_{2} \mathrm{CO}_{3}: \mathrm{H}_{2} \mathrm{O}=1: 10$ (1) Molar mass $\mathrm{M}_{\mathrm{r}} \text { of } \mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}=286$ TE on value of x		(2)

Question Number	Acceptable Answers	Reject	Mark
14(d)(iii)	Two matching pairs in either order. The effect on titration volumes is conditional on the error. Answers can be written on either set of lines		(4)
	Error 1 Not washing the weighing bottle (with distilled water) OR Not re-weighing the weighing bottle		
	ALLOW Not adding washings to volumetric flask OR Any indication that any solid left in the bottle needs to be accounted for OR Some solid is spilled when it is tipped into the volumetric flask	(1)	
IGNORE some solid is undissolved / any reference to uncertainties			
Effect on titration volumes 1 The titration volume is less because lower / decreased concentration (of sodium carbonate)	(1)		
Error 2 Not shaking / inverting / mixing the solution in the volumetric flask Effect on titration volumes 2 Titres inconsistent / varied because non- homogeneous solution	(1)		

(Total for Question 14 = 19 marks)

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 (a) (i)}$	$(\mathrm{n}=0.05 \times 0.00450=)$		1
	$2.25 \times 10^{-4} / 0.000225(\mathrm{~mol})$		
IGNORE SF except 1SF			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 (a) (i i)}$	$\left(\mathrm{n}=2.25 \times 10^{-4} \times 2=\right)$		1
	$4.50 \times 10^{-4} / 0.000450$ (mol)		
TE ans to (a)(i) $\times 2$			
	IGNORE SF except 1SF		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 (a) (\text { iii })}$	$\left(\mathrm{c}=4.50 \times 10^{-4} \div 0.025=\right)$		1
	$1.8 \times 10^{-2} / 0.018 / 1.80 \times 10^{-2} / 0.0180(\mathrm{~mol} \mathrm{dm}$		
	TE ans to $(\mathrm{a})(\mathrm{ii}) \div 0.025$		
IGNORE SF except 1 SF			

Question Number	Acceptable Answers	Reject	Mark
15(a)(iv)	Start at final answer (the difference) if correct or correct TE from (iii) then give 3 marks with or without correct working Ignore SF except 1SF for the "difference" only but do not penalise trailing zeros NOTE Negative value for "difference" does not get MP3 but can score MP1 and MP2 only If answer is incorrect then look at following working MP1 Initial KOH concentration $\begin{equation*} n=226.8 \div 56.1= \tag{1} \end{equation*}$ 4.04278/4.04 (mol) ALLOW use of 56 MP2 $\begin{equation*} [\mathrm{KOH}]=4.04278 \div 45= \tag{1} \end{equation*}$ $8.9840 \times 10^{-2} / 0.089840\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ NOTE 56 gives 0.09 A TE is allowed from incorrect number of mols MP3 Difference $\left(8.9840 \times 10^{-2}-1.80 \times 10^{-2}=\right)$ $\begin{equation*} 7.1840 \times 10^{-2} / 0.071840\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{equation*}$ NOTE 56 gives 0.072 Transferred errors $8.98 \times 10^{-2}-\text { ans to }(\mathrm{a})(\mathrm{iii})$ OR Their initial concentration of KOH - ans to (a)(iii) COMMENT A difference of 0.071 means there has been a rounding error and so will score 2 marks only if rounding errors have not already been penalised.	0.07	3

Question Number	Acceptable Answers	Reject	Mark
15(a) (v)	Correct final answer (181/182) to 3SF with or without working scores (2) $\begin{aligned} & \text { Answer to (iv) } \times 45 \text { OR } \times 56.1 \\ & \mathrm{n}=7.18 \times 10^{-2} \times 45=(3.231)(\mathrm{mol}) \\ & \mathrm{m}=3.231 \times 56.1=(181.359 / 181.4) \end{aligned}$ OR 181.2591/181.3 $\begin{equation*} =181(\mathrm{~g}) \tag{1} \end{equation*}$ NOTE ALLOW USE OF 56 Alternative method $\begin{equation*} \text { Answer to (ii) } \times \frac{45000}{25} \text { OR } \times 56 / 56.1 \tag{1} \end{equation*}$ Amount $=0.81(\mathrm{~mol})$ Mass of KOH left $0.81 \times 56.1 / 56$ $\begin{align*} & \quad=45.441 / 45.36(\mathrm{~g}) \tag{1}\\ & \text { Mass used }=226.8-45.441 / 45.36 \\ &=181(\mathrm{~g}) \end{align*}$		2

Some TE values:

Part	Answer	Mark	Answer	Mark
(i)	$\frac{25 \times 0.05}{1000}$ $=1.25 \times 10^{-3}$	0	$\frac{25 \times 4.5}{1000}$ $=0.1125$	0
(ii)	2.5×10^{-3}	1	0.225	1
(iii)	0.1	1	9	1
(iv)	$0.089-0.1$ $=-0.0102$	2	$0.089-9$ $=-8.91$	2
(v)	$0.459(\mathrm{~mol})$ and $25.7(\mathrm{~g})$	$400.95(\mathrm{~mol})$ and $22500(\mathrm{~g})$	2	

Question Number	Acceptable Answers	Reject	Mark
15(b)(i)	(From) (pale/bright) pink/red (To) colourless ALLOW one mark for 'colourless to pink/red (1) Second mark dependant on shade of pink/red/purple for first colour	purple ...clear	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 (b) (i i)}$	d/ brown/ colour (from the hair/skin likely to have) leached out/dissolved/ solution formed	1	
	ALLOW Red/ brown/ colour from the hair/skin makes the (colour) change/end point difficult to judge/see		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 (b) (i i i)}$	No Only a few drops of indicator used	Yes...	1
	OR Adding to an aqueous solution Ethanol mixes with water (in all proportions) ALLOW Ethanol is in solution IGNORE Any other reasons		

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 5 (c) (i)}$ | $($ Titre error) | | 2 |
| | $\left.\frac{(0.05 \times 2}{4.50} \times 100=\right) \pm 2.2(2)(\%)$ (1)
 $($ Sample error $)$
 $\left.\frac{(0.06}{25} \times 100=\right) \pm 0.24(\%)$ (1) | | |

Question Number	Acceptable Answers	Reject	Mark
15(c)(ii)	Mark each point independently Any two from: Reduce the concentration of the sulfuric acid Use a larger (initial) sample/R/KOH volume (1) Use $\mathrm{HCl}(\mathrm{aq})$ (of same concentration as sulfuric acid which would have a larger titre) Use greater (initial) concentration/mass of KOH Use less skin IGNORE (Just) use larger titre Repeat the titration Just changing the concentration	Use more skin	2

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 (c) (\text { iii) }}$	When it is concordant/the same OR Within $\pm 0.1\left(\mathrm{~cm}^{3}\right)$ of the (mean of) other titres ALLOW Within $\pm 0.2\left(\mathrm{~cm}^{3}\right)$ of the other titres (comment this is as per the User guide) IGNORE Close/similar/almost the same as other titres	1	

TOTAL FOR QUESTI ON 15 = 17 MARKS

