Group 1 & 2

Mark Scheme 1

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	Application of Core Principles of Chemistry
Sub Topic	Group 1 & 2
Booklet	Mark Scheme 1

Time Allowed: 59 minutes

Score: /49

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question Number	Correct Answer	Mark
Number		
1	В	(1)
	Incorrect answers	
	A - solubility of sulfates does not decrease	
	C - solubility of hydroxides does not increase and solubility of	
	hydroxides does not decrease	
	D - solubility of hydroxides does not increase	

Question Number	Correct Answer	Mark
2	В	1

Question Number	Correct Answer	Mark
3	В	1

Question Number	Correct Answer	Mark
4	В	1

Question Number	Correct Answer	Reject	Mark
5	С		1

~	Correct Answer	Reject	Mark
Number			
6	D		1

Question Number	Correct Answer	Reject	Mark
7	В		1

Question Number	Correct Answer	Reject	Mark
8	A		1

Question Number	Correct Answer	Reject	Mark
9	C		1

t Answer	Reject	Mark
		1
		,
t Answer	Reject	Mark
		1
t Answer	Reject	Mark
		1
t Answer	Reject	Mark
		1
	t Answer t Answer	t Answer Reject

Question Number	Acceptable Answers	Reject	Mark
14(a)(i)	Green (flame) ALLOW any shade of green eg pale green, apple green	Any other colour in combination with green eg blue-green	(1)

Question Number	Acceptable Answers	Reject	Mark
14(a)(ii)	Read the whole answer before awarding marks. If no mention of electrons only M3 may be awarded		(3)
	First mark Electrons excited/promoted to a higher energy level/shell (by thermal energy /heat from (Bunsen) flame) (1)	Just 'electrons excited / promoted'	
	IGNORE atom / ion Second mark (Promoted) electrons fall /drop /relax / return	Just 'energy lost'	
	to a lower energy level /(sub)shell/ orbital OR	37	
	Electrons return to ground state ALLOW Electrons drop back down / de-excited (1)		
	IGNORE atom / ion		
	Third mark Emitting (energy in the form of) radiation/light /photons (in the visible region) (1)	Just 'energy emitted'	
	ALLOW release / give out for emit		
	IGNORE colour / wavelength / frequency		

Question	Acceptable Answers	Reject	Mark
Number			
14(b)(i)	$2NaNO_3 \rightarrow 2NaNO_2 + O_2$		(1)
	OR $NaNO_3 \rightarrow NaNO_2 + \frac{1}{2}O_2$		
	OR multiples		
	IGNORE state symbols, even if incorrect		

Acceptable Answers	Reject	Mark
$2Mg(NO_3)_2 \rightarrow 2MgO + 4NO_2 + O_2$		(1)
OR		
$Mg(NO_3)_2 \rightarrow MgO + 2NO_2 + \frac{1}{2}O_2$		
OR multiples		
IGNORE		
State symbols, even if incorrect Water of crystallisation		
NOTE		
If no marks awarded for (b)(i) or (b)(ii), allow 1 mark for all correct products in unbalanced equations in (b)(i) and (b)(ii)		
	$2Mg(NO_3)_2 \rightarrow 2MgO + 4NO_2 + O_2$ OR $Mg(NO_3)_2 \rightarrow MgO + 2NO_2 + \frac{1}{2}O_2$ OR multiples IGNORE State symbols, even if incorrect Water of crystallisation NOTE If no marks awarded for (b)(i) or (b)(ii), allow 1 mark for all correct products in unbalanced	$2Mg(NO_3)_2 \rightarrow 2MgO + 4NO_2 + O_2$ OR $Mg(NO_3)_2 \rightarrow MgO + 2NO_2 + 1/2O_2$ OR multiples IGNORE State symbols, even if incorrect Water of crystallisation NOTE If no marks awarded for (b)(i) or (b)(ii), allow 1 mark for all correct products in unbalanced

Acceptable Answers	Reject	Mark
First mark - charge Magnesium ion has a greater charge than sodium ion OR Magnesium is Mg ²⁺ and sodium is Na ⁺ ALLOW magnesium ion has a higher charge density ALLOW Mg have a charge of +2 and Na has a charge of +1		(4)
ALLOW mention of atoms (1)		
Second mark - size Magnesium ion is smaller than sodium ion OR		
Sodium ion is larger than magnesium ion		
ALLOW magnesium is smaller than sodium, or reverse argument, if ion is stated for first mark (1)		
IGNORE atomic radius		
Third mark - comparison of polarising power Magnesium / Mg ²⁺ / cation / smaller ion causes more polarisation / distortion OR Sodium / Na ⁺ / cation / larger ion causes less polarisation / distortion (1)	Mg / Mg ²⁺ is distorted	
Fourth mark - what is polarised C-O bonds / C=O bonds ALLOW (Electron cloud in) carbonate (ion) / CO ₃ ²⁻ / anion / negative ion (and therefore magnesium carbonate decomposes more readily) (1) IGNORE magnesium carbonate is more polarised	N-O bonds / N=O bonds / nitrate ion / NO ₃ ⁻ Bond between cation and anion is more easily broken	
	First mark - charge Magnesium ion has a greater charge than sodium ion OR Magnesium is Mg ²⁺ and sodium is Na ⁺ ALLOW magnesium ion has a higher charge density ALLOW Mg have a charge of +2 and Na has a charge of +1 ALLOW mention of atoms (1) Second mark - size Magnesium ion is smaller than sodium ion OR Sodium ion is larger than magnesium ion ALLOW magnesium is smaller than sodium, or reverse argument, if ion is stated for first mark (1) IGNORE atomic radius Third mark - comparison of polarising power Magnesium / Mg ²⁺ / cation / smaller ion causes more polarisation / distortion OR Sodium / Na ⁺ / cation / larger ion causes less polarisation / distortion (1) Fourth mark - what is polarised C-0 bonds / C=0 bonds ALLOW (Electron cloud in) carbonate (ion) / CO ₃ ²⁻ / anion / negative ion (and therefore magnesium carbonate decomposes more readily) (1)	First mark - charge Magnesium ion has a greater charge than sodium ion OR Magnesium is Mg²⁺ and sodium is Na⁺ ALLOW magnesium ion has a higher charge density ALLOW Mg have a charge of +2 and Na has a charge of +1 ALLOW mention of atoms (1) Second mark - size Magnesium ion is smaller than sodium ion OR Sodium ion is larger than magnesium ion ALLOW magnesium is smaller than sodium, or reverse argument, if ion is stated for first mark (1) IGNORE atomic radius Third mark - comparison of polarising power Magnesium / Mg²⁺ / cation / smaller ion causes more polarisation / distortion OR Sodium / Na⁺ / cation / larger ion causes less polarisation / distortion (1) Fourth mark - what is polarised C-O bonds / C=O bonds ALLOW (Electron cloud in) carbonate (ion) / CO₃²⁻ / anion / negative ion (and therefore magnesium carbonate decomposes more readily) IGNORE magnesium carbonate is more polarised easily broken

Question Number	Acceptable Answers		Reject	Mark
14(d)(i)	Correct answer with no working or an		Incorrect rounding or	(3)
	alternative method scores (3) marks		use of 1SF once only in (d)(i) and (d)(ii)	
	mol HCl used = <u>16.65 x 0.105</u>	(1)		
	1000 = 1.74825 x 10 ⁻³			
	mol Na ₂ CO ₃ in 25 cm ³ = $\frac{1.74825 \times 10^{-3}}{2}$			
	= 8.74125 x 10 ⁻⁴			
	TE on mol HCl	(1)		
	mol Na ₂ CO ₃ in 250 cm ³			
	$= 8.74125 \times 10^{-4} \times 10^{-1}$			
	= 8.74125×10^{-3} TE on mol Na ₂ CO ₃ in 25 cm ³	(1)		
		(1)		
	IGNORE SF except 1 SF			

Question	Acceptable Answers	Reject	Mark
Number			
14(d)(ii)	Molar mass		(2)
	$M_{\rm r}$ of Na ₂ CO ₃ .xH ₂ O = 2.50		
	8. 7412 5 x 10 ⁻³		
	= 286(.0) (1)		
	Value of x		
	$x = 286 - 106 = 10 \tag{1}$		
	18		
	Both marks TE on 21(d)(i) but do not award M2 if		
	$M_{\rm r}$ of hydrate < 106		
	Alternative method		
	Value of x		
	Mass $Na_2CO_3 = 8.74125 \times 10^{-3} \times 106 = 0.92657$ (g)		
	Mass $H_2O = 2.5 - 0.92657 = 1.57343$ (g)		
	Moles $H_2O = 1.57343/18 = 0.087413$		
	Ratio $Na_2CO_3: H_2O = 1:10$		
	(1)		
	Molar mass		
	$M_{\rm r}$ of Na ₂ CO ₃ .10H ₂ O = 286		
	W _r of Ha ₂ CO ₃ . 10H ₂ O - 200		
	TE on value of x (1)		
	TE on value of x (1)		

Question Number	Acceptable Answers	Reject	Mark
14(d)(iii)	Two matching pairs in either order. The effect on titration volumes is conditional on the error. Answers can be written on either set of lines		(4)
	Error 1 Not washing the weighing bottle (with distilled water) OR Not re-weighing the weighing bottle		
	ALLOW Not adding washings to volumetric flask OR		
	Any indication that any solid left in the bottle needs to be accounted for OR Some solid is spilled when it is tipped into the		
	volumetric flask (1)		
	IGNORE some solid is undissolved / any reference to uncertainties		
	Effect on titration volumes 1 The titration volume is less because lower / decreased concentration (of sodium carbonate) (1)		
	Error 2 Not shaking / inverting / mixing the solution in the volumetric flask (1)		
	Effect on titration volumes 2 Titres inconsistent / varied because non-homogeneous solution (1)		

(Total for Question 14 = 19 marks)

Question Number	Acceptable Answers	Reject	Mark
15 (a)(i)	(n=0.05 x 0.00450=)		1
	2.25 x 10 ⁻⁴ / 0.000225 (mol)		
	IGNORE SF except 1SF		

Question Number	Acceptable Answers	Reject	Mark
15 (a)(ii)	$(n=2.25 \times 10^{-4} \times 2=)$		1
	4.50 x 10 ⁻⁴ / 0.000450 (mol)		
	TE ans to (a)(i) x 2		
	IGNORE SF except 1SF		

Question Number	Acceptable Answers	Reject	Mark
15(a)(iii)	$(c=4.50 \times 10^{-4} \div 0.025=)$		1
	$1.8 \times 10^{-2} / 0.018 / 1.80 \times 10^{-2} / 0.0180 \text{ (mol dm}^{-3}\text{)}$		
	TE ans to (a)(ii) ÷0.025		
	IGNORE SF except 1SF		

Question Number	Acceptable Answers	Reject	Mark
15 (a)(iv)	Start at final answer (the difference) if correct or correct TE from (iii) then give 3 marks with or without correct working		3
	Ignore SF except 1SF for the "difference" only but do not penalise trailing zeros		
	NOTE Negative value for "difference" does not get MP3 but can score MP1 and MP2 only		
	If answer is incorrect then look at following working		
	MP1 Initial KOH concentration		
	$n=226.8 \div 56.1=$ (1)		
	4.04278/4.04 (mol)		
	ALLOW use of 56		
	MP2 [KOH]= $4.04278 \div 45 =$ (1)		
	8.9840 x 10 ⁻² / 0.089840 (mol dm ⁻³)		
	NOTE 56 gives 0.09 A TE is allowed from incorrect number of mols		
	MP3 Difference $(8.9840 \times 10^{-2} - 1.80 \times 10^{-2} =)$		
	7.1840 x 10 ⁻² / 0.071840 (mol dm ⁻³)	0.07	
	NOTE 56 gives 0.072 (1)		
	Transferred errors 8.98 x 10 ⁻² - ans to (a)(iii)		
	OR		
	Their initial concentration of KOH – ans to (a)(iii)		
	COMMENT A difference of 0.071 means there has been a rounding error and so will score 2 marks only if rounding errors have not already been penalised.		

Question Number	Acceptable Answers	Reject	Mark
15 (a)(v)	Correct final answer (181/182) to 3SF with or without working scores (2)		2
	Answer to (iv) x 45 OR x 56.1 (1)		
	$n=7.18 \times 10^{-2} \times 45 = (3.231) \text{ (mol)}$		
	m=3.231 x 56.1 = (181.359 / 181.4)		
	OR 181.2591 / 181.3		
	= 181 (g)		
	NOTE ALLOW USE OF 56 (1)		
	Alternative method		
	Answer to (ii) $\times \frac{45000}{25}$ OR $\times 56/56.1$ (1)		
	25 Amount = 0.81 (mol)		
	Mass of KOH left 0.81 x 56.1/56		
	= 45.441/45.36 (g)		
	Mass used = 226.8 - 45.441/45.36		
	= 181 (g) (1)		

Some TE values:

Part	Answer	Mark	Answer	Mark
(i)	25 x 0.05	0	25 x 4.5	0
	1000		1000	
	$= 1.25 \times 10^{-3}$		= 0.1125	
(ii)	2.5 x 10 ⁻³	1	0.225	1
(iii)	0.1	1	9	1
(iv)	0.089 - 0.1	2	0.089 - 9	2
	= -0.0102		= -8.91	
(v)	0.459 (mol)	2	400.95 (mol)	2
	and 25.7 (g)		and 22 500 (g)	

Question Number	Acceptable Answers		Reject	Mark
15 (b)(i)	(From) (pale/bright) pink/red	(1)	purple	2
	(To) colourless	(1)	clear	
	ALLOW		crear	
	one mark for 'colourless to pink,	/red (1)		
	Second mark dependant on shad pink/red/purple for first colour	de of		

Question Number	Acceptable Answers	Reject	Mark
15(b)(ii)	d/brown/colour (from the hair/skin likely to have) leached out/dissolved/solution formed ALLOW Red/brown/colour from the hair/skin makes the (colour) change/end point difficult to judge/see		1

Question Number	Acceptable Answers	Reject	Mark
15 (b)(iii)	No Only a few drops of indicator used	Yes	1
	OR		
	Adding to an aqueous solution		
	OR		
	Ethanol mixes with water (in all proportions)		
	ALLOW		
	Ethanol is in solution		
	IGNORE		
	Any other reasons		

Question Number	Acceptable Answers		Reject	Mark
15 (c)(i)	(Titre error)			2
	$(0.05 \times 2 \times 100 =) \pm 2.2(2)$ (%) 4.50	(1)		
	(Sample error)			
	$(0.06 \times 100 =) \pm 0.24 (\%)$ 25	(1)		

Question Number	Acceptable Answers		Reject	Mark
15 (c)(ii)	Mark each point independently			2
	Any two from:			
	Reduce the concentration of the sulfacid	furic (1)		
	Use a larger (initial) sample/R/KOH volume (1)			
	Use HCI(aq) (of same concentration sulfuric acid which would have a largetitre)			
	Use greater (initial) concentration/n KOH	nass of (1)		
	Use less skin	(1)	Haa mara	
	IGNORE		Use more skin	
	(Just) use larger titre			
	Repeat the titration			
	Just changing the concentration			

Question Number	Acceptable Answers	Reject	Mark
15 (c)(iii)	When it is concordant/the same		1
	OR		
	Within ±0.1 (cm³) of the (mean of) other titres		
	ALLOW		
	Within ±0.2 (cm³) of the other titres (comment this is as per the User guide)		
	IGNORE		
	Close/similar/almost the same as other titres		

TOTAL FOR QUESTION 15 = 17 MARKS