Group 1 & 2

Mark Scheme 2

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	Application of Core Principles of Chemistry
Sub Topic	Group 1 & 2
Booklet	Mark Scheme 2

Time Allowed: 52 minutes

Score: /43

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question Number	Acceptable Answers	Reject	Mark
1 *(a)	These marks are independent The outer electrons are further from the nucleus / the electron being removed is further from the nucleus/ larger atomic	Larger ionic radius (in Ca) Just "Calcium is	2
	radius (in calcium)	larger" Reference to molecules, delocalised electrons Just "Ca has more energy levels"	
	ALLOW Ca has one more shell/ more shells (of electrons) (1)	Two more shells	
	More shielding (in calcium) (1) OR Reverse argument for magnesium ALLOW Discussion based on trend going down group without specifying Mg and Ca IGNORE repulsion between shells	Any reference to polarising power of ions	

Question Number	Acceptable Answers	Reject	Mark
1 (b)	Electrons are promoted/ jump / become excited to higher energy level (1)		3
	Electron(s) return/ fall back to lower energy level		
	ALLOW to ground state (1)		
	Release of (visible) light (energy) upon return / energy is released in visible spectrum		
	ALLOW release of photons upon return (1)		

Question Number	Acceptable Answers	Reject	Mark
1 (c)(i)	$CaO + 2HNO_3 \rightarrow Ca(NO_3)_2 + H_2O$		1
	Ignore state symbols even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
1 (c)(ii)	Observation mark: (Calcium nitrate) produces a brown/ red-brown gas	Flame colours	2
	ALLOW NO ₂ for gas Fumes for gas		
	OR (Potassium nitrate) does not produce a brown gas		
	IGNORE Oxygen is given off / Gas given off relights a glowing splint		
	(1) Second mark (can also be an		
	observation): (Only calcium nitrate) produces the oxide	Reference to other incorrect products.	
	OR (Only potassium nitrate) produces the nitrite	products.	
	OR calcium nitrate is less stable to heat		
	OR potassium nitrate decomposes at a higher temperature/takes longer to produce oxygen (1)		
	ALLOW "Calcium nitrate produces a white solid and potassium nitrate produces a yellow solid" as an alternative for either mark		
	NOTE Reject comparisons with one correct and one incorrect statement (this applies to both marks)		

Question	Acceptable Answers	Reject	Mark
Number			
1 (d)(i)	Hydrogen (gas) / H ₂		1
	If name and formula are given both		
	must be correct		Į.

Question Number	Acceptable Answers	Reject	Mark
1 (d) (ii)	White ppt/white solid/goes milky/goes cloudy/ white suspension (1) $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$ (1)	White solution / any solution produced	2
	ALLOW Alternative answer White precipitate forms which dissolves with excess carbon dioxide (1) $Ca(OH)_2 + 2CO_2 \rightarrow Ca(HCO_3)_2$		

Question Number	Acceptable Answers	Reject	Mark
1 (d)(iii)	(One of): Sr(OH) ₂ /Ba(OH) ₂ /Ra(OH) ₂ OR (One of):Strontium/Barium/Radium hydroxide	SrOH/ BaOH/ RaOH Just Sr/ Ba/ Ra	1
	If name and formula given then both must be correct	Mg(OH) ₂ /MgOH/ magnesium hydroxide/ Be(OH) ₂ /BeOH/ beryllium hydroxide	

Question Number	Acceptable Answers	Reject	Mark
1 (e)(i)	White ppt/solid ALLOW White crystals (1)	White ppt of BaCl ₂ / MgCl ₂ Extra observations eg effervescence	2
	(BaSO ₄ is insoluble but) MgSO ₄ is (very) soluble / MgSO ₄ gives a colourless solution/ MgSO ₄ gives no precipitate ALLOW BaSO ₄ does not dissolve TE on first mark if it stated that a precipitate formed even if colour is wrong/ missing (1)	Magnesium is soluble / barium is insoluble A precipitate of magnesium sulfate forms and then dissolves Just "MgSO ₄ is more soluble / less insoluble" Reference to solubility of chlorides There would be no reaction	

Question Number	Acceptable Answers	Reject	Mark
1 (e)(ii)	Barium sulfate is not absorbed/ is insoluble	Just 'Barium'	1
	IGNORE Comments on X-rays Barium sulfate is not digested Barium sulfate is unreactive/ does not react with stomach acids References to toxicity.		

Question Number	Acceptable Answers	Reject	Mark
1 (f)	First mark: (Increase) concentration of HCI (1)	Increase concentration of CaCO ₃ /HCl and CaCO ₃ /reactants	4
	Second mark More particles/ moles of (HCI) in the same volume OR more (frequent/ successful) collisions	Increase kinetic energy of particles	
	Allow second mark only if factor is concentration (1)		
	Any two from three of the following for third and fourth marks:		
	Reduce particle size / use powder (instead of lumps)/ use finely divided (solid) (1)		
	(Increases) surface area (1)		
	more (frequent/ successful) collisions (1)	Increase kinetic energy of particles	
	ALLOW Reverse arguments		

Question Number	Acceptable Answers	Reject	Mark
1 (g)	Pressure only affects gaseous reactions/ there are no gaseous reactants (or products) /there is no significant volume change/ liquids are incompressible		1
	ALLOW pressure doesn't affect solids/ solutions		
	Note: there are many possible correct ways of expressing the idea that pressure only affects rate of reactions involving gases.		
	IGNORE Number of moles in reaction doesn't change		

TOTAL FOR Q1 = 20 MARKS

Question	Acceptable Answers	Reject	Mark
			_
2(a)	Diagram similar to: Magnesite Heat Limewater turns cloudy Marking point 1 Heat/Bunsen flame and Magnesite (1) Marking point 2 Suitable container and delivery tube dipping into the liquid ALLOW the collection of gas over water/ syringe (1) Marking point 3 Limewater turns cloudy/milky/white precipitate (1) ALLOW alternative correct diagrams e.g. use of teat pipette to collect carbon dioxide	System	3
	The limewater change can be stated on the diagram or on the lines provided. Clamp not required		

Question Number	Acceptable Answers		Reject	Mark
2(b)	$Mg(OH)_2(s) \rightarrow MgO(s) + H_2O(g) /(I)$			2
	Equation State symbols	(1) (1)	(aq)	
	OR multiples			
	Symbol mark dependent on correct equ	ation		

Question Number	Acceptable Answers	Reject	Mark
2(c)	Any from: $Ca(OH)_2/Sr(OH)_2/Ba(OH)_2$	Be(OH) ₂	1
	ALLOW Ra(OH) ₂		

Question Number	Acceptable Answers		Reject	Mark
2(d)	Mg ₃ N ₂ Energy from (burning) magnesium/the reaction and breaks the N≡N triple bond	(1)		3
	ALLOW breaks down nitrogen molecules Carry out in a mixture of an inert gas (argon) and oxygen (gas) ALLOW Carry out in (pure) oxygen (gas) OR	(1)	Just 'remove nitrogen'	
	Carry out in steam	(1)		

Question Number	Acceptable Answers		Reject	Mark
2(e)	Electrons are promoted OR excited OR moved to a higher energy level Electrons return to lower energy level OR return to ground state	(1)		4
	OR	(1)		
	Energy/Light/Radiation/Photon is emitted/released upon return IGNORE colour is released	(1)	Proton	
	(For magnesium compounds) this energy/radiation/photon is not in the visible regio ALLOW light is not in the visible region			

Question Number	Acceptable Answers	Reject	Mark
2(f)	$2Mg(NO_3)_2 \rightarrow 2MgO + 4NO_2 + O_2$		1
	OR multiples Ignore state symbols even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
2(g)	H ₂ SO ₄		1
	ALLOW As part of the following equation $MgO + H_2SO_4 \rightarrow MgSO_4 + H_2O$		
	Ignore sulfuric acid and references to concentration		

Question Number	Acceptable Answers		Reject	Mark
2(h)(i)	If $x = 6.41$ (from $M_r = 120/120.1$) 6.42 (from $M_r = 120.3$) 6.43 (from $M_r = 120.4$) and there is some evidence of working, award all 3 marks			3
	If the masses of water and MgSO ₄ are transposed then $x = 6.96$ and scores 2	sea,		
	Answer must be to 3SF Answer alone scores (1)			
	$n(MgSO_4) = 2.55 \div 120.4 = 0.021179 \text{ (mol)}$	(1)		
	$(m(H_2O) = 5.00 - 2.55 = 2.45)$ $n(H_2O) = 2.45 \div 18 = 0.136111 (mol)$	(1)		
	(Ratio 1:6.43) x = 6.43 TE on calculated values above	(1)		
	ALTERNATIVE METHOD			
	$2.55 \div 5 = 120.4 \div (120.4 + 18x)$	(1)		
	0.51(120.4 + 18x) = 120.4	(1)		
	61.404 + 9.18x = 120.4			
	X = 6.43	(1)		
	Penalise use of 1SF in intermediate values OR final answer not 3SF			

Question Number	Acceptable Answers	Reject	Mark
2(h)(ii)	Heat to constant mass ALLOW Heat for a longer period of time (1) To ensure all the water is removed ALLOW To ensure all the water is evaporated (1) Second mark is dependent on first For max (1) Solid may 'spit' and lose mass and so heat gently OR Use a larger mass of Epsom salts to reduce percentage error (of weighing)	Just 'Heat more strongly'	2

Question Number	Acceptable Answers	Reject	Mark
2(i)	90(°) Four bonded pairs of electrons (in a flat/planar ring) result in maximum separation/minimum repulsion (1) If a bond angle of 109.5° is given then the second mark can be awarded for four bonded electron pairs repelling to maximum separation/minimum repulsion		2

Question Number	Acceptable Answers	Reject	Mark
2(j)	Layer/barrier of magnesium oxide forms		1
	OR		
	magnesium oxide forms on the surface (preventing further reaction)		

TOTAL FOR SECTION C (QUESTION 2) = 23 MARKS