Group 7

Mark Scheme 1

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Торіс	Application of Core Principles of Chemistry
Sub Topic	Group 7
Booklet	Mark Scheme 1

Time Allowed:	51 minutes
Score:	/42
Percentage:	/100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question Number	Correct Answer	Mark
1	A	1

Question Number	Correct Answer	Mark
2	D	1

Question Number	Correct Answer	Reject	Mark
3	D		1

Question Number	Correct Answer	Reject	Mark
4	A		1

Question Number	Correct Answer	Reject	Mark
5	С		1

Question Number	Correct Answer	Reject	Mark
6	Α		1

Question Number	Correct Answer	Reject	Mark
7	С		1

Question Number	Correct Answer	Reject	Mark
8	В		1

Question Number	Correct Answer	Reject	Mark
9	С		1

Question Number	Correct Answer	Reject	Mark
1 0	А		1

Question Number	Acceptable Answers	Reject	Mark
11(a)	iodine IGNORE I ₂ / I	lodide /I	(1)

Question	Acceptable Answers	Reject	Mark
Number			
11(b)	Allow oxidation numbers written under species in equation or in the text below First mark - oxidation numbers of reactants F ₂ F is 0 OH ⁻ O is -2 (1) Second mark - oxidation numbers of products		(3)
	OF_2 O is +2 and F is -1 H_2O O is -2 F^- F is -1 (1)		
	Third mark - redox Fluorine / F_2 is reduced as oxidation number decreases / changes from 0 to -1 and oxygen is oxidised as oxidation number increases / changes from -2 to +2 OR Fluorine / F_2 is an oxidising agent as oxidation number decreases / changes from 0 to -1 and oxygen is a reducing agent as oxidation number increases / changes from -2 to +2 ALLOW O ²⁻ for oxygen (1) IGNORE gain / loss of electrons	Just 'ON F decreases and ON O increases' If O is -2 and F is +1 in OF ₂ , fluorine is oxidised from 0 to +1 and reduced from 0 to -1 (disproportionation)	

Question Number	Acceptable Answers	Reject	Mark
11(c)	$\begin{split} S_2O_3^{2^-} + 5H_2O + 4Cl_2 &\rightarrow 2SO_4^{2^-} + 10H^+ + 8Cl^- \\ \mbox{ALLOW multiples} \\ \mbox{ALLOW} \\ Na_2S_2O_3 + 5H_2O + 4Cl_2 \\ &\qquad \rightarrow Na_2SO_4 + H_2SO_4 + 8H^+ + \\ 8Cl^- \\ \mbox{IGNORE working} \end{split}$	uncancelled electrons reverse reaction	(1)

Question	Acceptable Answers	Reject	Mark
Number			
11(d)(i)	Instantaneous / temporary dipole		(2)
	OR		
	temporary asymmetric electron distribution		
	(on one molecule) (1)		
	Induces / creates / causes a dipole / charge	Just 'induces a dipole'	
	and		
	in adjacent / another molecule (and these		
	opposite charges attract) (1)		
	IGNORE ID - ID		

Question Number	Acceptable Answers	Reject	Mark
11(d)(ii)	There are (18) more electrons in iodine (than bromine) OR There are more electrons in HI (than HBr) ALLOW There is a greater electron cloud in iodine (than bromine) ALLOW Iodide has more electrons (than bromide) ALLOW Iodine has a larger surface area (than bromine) IGNORE Iodine is larger / heavier / has larger instantaneous dipole / has a greater electron density / has more protons / has more neutrons (than bromine)	There are more electrons in I ⁻ / iodide ions (than bromide ions / Br ⁻)	(1)

Question	Acceptable Answers	Reject	Mark
Number			
11(d)(iii)	Identification of intermolecular forces		(2)
	HF (also) has hydrogen bonds (1)		
	IGNORE HCl only has London forces		
	Comparison of strength		
	Hydrogen bonds are stronger than London forces / other intermolecular forces	Any reference to breaking H- Hal bond	
	ALLOW		
	Hydrogen bonding is stronger OR	London forces in HF are	
	Hydrogen bonding is the strongest intermolecular force OR	stronger (than those in HCl)	
	More energy is needed to break hydrogen bonds (than London forces)		
	UR The intermolecular forces in HE are stronger (than those		
	in HCl) (1)		
	IGNORE Fluorine is more electronegative than chlorine / there is a greater electronegativity difference in HF than HCl		

Question	Acceptable Answers	Reject	Mark
Number			
11(e)	 (Shape [PCl₄]⁺) tetrahedral (1) (Shape [PCl₆]⁻) octahedral (1) Justification 4 electron / bond pairs in [PCl₄]⁺ and 6 electron / bond pairs in [PCl₆]⁻ (1) Electron/bond pairs / regions of electron density arranged to minimise repulsion 	Penalise use of bonds for electron pairs once only	(4)
	ALLOW Maximum separation of electron/bond pairs / regions of electron density (1) IGNORE Lone pairs repel more than bond pairs / bond angles, even if incorrect	Just 'minimise repulsion / maximum separation'	

Question Number	Acceptable Answers	Reject	Mark
12 (a)	$NaCI + H_2SO_4 \rightarrow HCI + NaHSO_4$		1
	ALLOW Multiples HNaSO4		
	$2NaCl + H_2SO_4 \rightarrow 2HCl + Na_2SO_4$		
	IGNORE state symbols even if incorrect		
	COMMENT ALLOW Capitals or lower case in formulae		

Question Number	Acceptable Answers	Reject	Mark
1 2 (b)	Ammonia (gas) / NH ₃	Ammonium	2
	Allow Ammonia solution/ NH ₃ (aq) (1)		
	White smoke/solid	Incorrect identification of white smoke	
	white cloud /Dense white fumes (1) The observation mark is consequential on use of ammonia. If name and formula are given, both must be correct.	Misty fumes / steamy fumes/ white gas/ white ppt	

Question Number	Acceptable Answers		Reject	Mark
12 (c)	White ppt/solid		Just "white" Cream ppt	3
	white crystals	(1)		
	IGNORE identification of white solid, even wrong	if		
	(ppt/solid) dissolves (in excess) /(colourless) solution forms		other colours of solution	
	ALLOW (ppt/solid) disappears/ soluble	(1)		
	IGNORE			
	clear solution		Dissolves	
	$(c.NH_3)$ dissolves AgBr (as well as	5	bromide ions/ bromine	
	Agu)	(1)	dissolves in	
			dilute NH ₃ "	
			c.NH ₃ dissolves other things	

TOTAL FOR Q12 = 6 MARKS

Question Number	Acceptable Answers	Reject	Mark
13 (a)(i)	Image: Second state of the second s		2

Question Number	Acceptable Answers	Reject	Mark
13 (a)(ii)	There are vacant (3) d orbitals / They are using (3) d orbitals ALLOW Sub-shells for orbitals Use of D for d	2d p/ f orbitals Shell for sub- shell	1

Question Number	Acceptable Answers	Reject	Mark
1 3 (b)(i)	$(n=8.35 \div 167 =) 0.05(00) (mol)$ (1) Ignore any units even if incorrect.		2
	$\begin{array}{l} (c= 0.05 \div 0.25 =) \ 0.2(00) \ (mol \ dm^{-3}) \\ TE \ on \ incorrect \ number \ of \ moles \ in \ first \\ mark \end{array} \tag{1}$		
	Correct answer without working scores (2) If final units are given they must be correct.	mol /dm ⁻³	
	ALLOW 1sf mol /dm ³ OR M		

Question Number	Acceptable Answers		Reject	Mark
13 (b)(ii)	(0.0025 x 6 =) 0.015 (mol) (***	1)		3
	(0.015 x 166 = 2.49 (g)) TE from first mark ((1)		
	$2.6 \le value \le 5.0 (g)$			
	TE for third mark as long as a calculation has been done for second mark. Values should be at least 0.1 g above calculated value and less than double calculated valu	or third mark as long as a calculation been done for second mark. Values Id be at least 0.1 g above calculated e and less than double calculated value. (1)		
	ALLOW 1sf for suitable mass			

Question Number	Acceptable Answers	Reject	Mark
1 3 (b)(iii)	(0.001 x 2 =) 0.002/ 2 x 10 ⁻³ (mol) (1)		2
	$(V = 0.002 \div 0.1 \times 1000 =) 20 (cm^3)$		
	ALLOW 0.02 dm ³ / 0.020 dm ³ (1)	0.02 0.02 dm ⁻³	
	If units are not in cm ³ they must be stated TE from incorrect number of mol		
	Correct answer without working scores (2)		

Question Number	Acceptable Answers		Reject	Mark
13	Mass of $KBrO_3$	(1)		2
(b)(iv)				
	Second mark depends on correct			
	choice in first.			
	Percentage error/ uncertainty large		Just	
	with a small mass		"Mass is only to	
	OR Mass is only to 1sf		2 decimal	
		(1)	places" /	
	IGNORE		"mass is only	
	calculation, even if incorrect		0.07g″/	
			"mass is not	
			accurate"	

TOTAL FOR Q13 = 12 MARKS