Shapes of Molecules \& Ions

Mark Scheme

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	Application of Core Principles of Chemistry
Sub Topic	Shapes of Molecules \& Ions
Booklet	Mark Scheme

Time Allowed:	38 minutes
Score:	$/ 31$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	$' 77.5 \%$	70%	62.5%	57.5%	45%	$<45 \%$

Question Number	Correct Answer	Mark
$\mathbf{1}$	C	(1)
	Incorrect answers $\mathrm{A}-\mathrm{BF}_{3}$ is not pyramidal $\mathrm{B}-\mathrm{BF}_{3}$ is not pyramidal and PH_{3} is not trigonal planar $\mathrm{D}-\mathrm{PH}_{3}$ is not trigonal planar	

Question Number	Correct Answer	Mark
$\mathbf{2}$	B	(1)
	Incorrect answers A - graphite is not 109.5° C - diamond is not 120° and graphite is not 109.5° D - diamond is not 120°	

Question Number	Correct Answer	Mark
$\mathbf{3}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{4}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{5}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{6}$	C	$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{7}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{8}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{9}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2}$	C		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (a) (i)}$	(No because) The oxidation number of iodine in HIO_{3} and $\mathrm{I}_{2} \mathrm{O}_{5}$ is $\mathbf{+ 5 / 5 + / \mathbf { V }}$ OR The oxidation number +5/5+/V remains the same.	Yes	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (a) (i i)}$	To remove the water formed	Water of hydration	
	OR prevent the 'back'/reverse reaction/to favour the right hand side/ to move the position of the equilibrium to the right/ to prevent $\mathrm{I}_{2} \mathrm{O}_{5}$ reacting with water OR To stop hydrolysis of iodine pentoxide		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{1 3 (a) (i i i)}$	$\mathrm{I}_{2} \mathrm{O}_{5} \rightarrow \mathrm{I}_{2}+21 / 2 \mathrm{O}_{2}$	Oxygen gas on both sides of the equation.			
	Allow multiples/fractions				
Allow also the use of \rightleftharpoons.					
Ignore state symbols even if incorrect.					
Ignore temperatures.				\quad	$\mathbf{1}$
:---					

Question Number	Acceptable Answers	Reject	Mark
13(a)(iv)	Double-bonded oxygens at the 4 corners, each with 2 lone pairs (1) Iodine to have 12 electrons and the central oxygen to be single-bonded with two lone pairs Alternative diagrams with dative covalent bonds instead of double bonds to the oxygen, but then the oxygen would have three lone pairs, could be allowed for one mark. Allow one mark for correct diagram with all dots or all crosses Allow dots and crosses to be other way round, • for I and X for O. Lone pairs do not necessarily have to be clearly paired.		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (a) (v)}$	$105^{\circ}-107^{\circ}$ Pyramidal Ignore trigonal, or alternative spellings of, or triangular before pyramidal	Bipyramidal planar	

Question Number	Acceptable Answers	Reject	Mark
13(b)(i)	In (b) any units given must be correct. Penalise once only. TE throughout $\begin{aligned} & (0.01 \times 0.0216=) \\ & 2.16 \times 10^{-4} / 0.000216(\mathrm{~mol}) \end{aligned}$	$\begin{aligned} & 2.2 \times 10^{-4} / \\ & 0.00022 \end{aligned}$	1
Question Number	Acceptable Answers	Reject	Mark
13(b)(ii)	I GNORE SF except 1SF. Penalise once only in (b)(ii), (iv), (v) and (vii). $4.32 \times 10^{-4} / 0.000432(\mathrm{~mol})$ Allow $4.3 \times 10^{-4} / 0.00043(\mathrm{~mol})$ Allow TE from (b)(i) $\times 2$ Allow any SF except 1		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (b) (i i i)}$	$(0.04 \times 0.02=)$		
	$8.0 \times 10^{-4} / 0.00080(\mathrm{~mol})$		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (b) (i v) ~}$	$\left(8.0 \times 10^{-4}-4.32 \times 10^{-4}=\right)$		
$3.68 \times 10^{-4}(\mathrm{~mol})$			
	Allow $3.7 \times 10^{-4} / 0.00037$ Allow TE from (b)(iii) ans - (b)(ii) ans Allow any SF except 1		

$\left.\begin{array}{|l|l|l|c|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\ \hline \mathbf{1 3 (b) (v)} & 1.84 \times 10^{-4} / 0.000184(\mathrm{~mol}) & & \\ & \text { Allow } 1.85 \times 10^{-4} / 0.000185 / \\ 1.8 \times 10^{-4} / 0.00018 \\ & \text { Allow TE from (b)(iv) ans } \div 2 \\ \text { Allow any SF except } 1\end{array}\right)$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (b) (v i)}$	$\mathrm{I}_{2} \mathrm{O}_{5}+5 \mathrm{CO} \rightarrow \mathrm{I}_{2}+5 \mathrm{CO}_{2}$		
Allow multiples/fractions Ignore state symbols even if incorrect		$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (b) (v i i)}$	$\left(1.84 \times 10^{-4}\right) \times 5$	(1)	
$\times 24=2.208 \times 10^{-2} / 0.02208\left(\mathrm{dm}^{3}\right)$	(1)		
	Allow TE from (b)(v) and or b(vi) Allow any SF except 1 Correct answer no working Allow answer in cm^{3} but the unit must be given eg $22.08 \mathrm{~cm}^{3}$		$\mathbf{2}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (b) (v i i i)}$	Repeat the experiment (to get concordant titres)/ Divide solution into (equal) samples before carrying out titration/ divide the gas into (equal) samples before carrying out titration.	Just 'repeat the titration'	
	IGNORE: Use a larger volume of gas/Use a weaker concentration of thiosulfate /Use more accurate equipment		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (c) (i)}$	(cars have a) Catalytic converter	Just 'car converted to run on other fuels which contain carbon'	ALLOW Other suitable modifications which refer to more efficient combustion OR Use of hydrogen as a fuel or solar power Or use of electric cars.Just 'catalyst' Just 'more fuel efficient cars'

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (c) (i i)}$	The amount of $\mathbf{C O}_{\mathbf{2}}$ produced (on combustion) is equal to the amount of $\mathbf{C O}_{\mathbf{2}}$ absorbed (during photosynthesis) (1)	Just 'carbon'	
Biofuel/ any suitable biofuel example such as bioethanol/ biodiesel/ suitable description of source such as "ethanol (1) produced from sugar"	Just 'Ethanol' Fuel cells		
ALLow Hydrogen produced using renewable resources	(1)		

