## Alcohols \&

## Halogenoalkanes

## Mark Scheme 2

| Level | International A Level |
| :--- | :--- |
| Subject | Chemistry |
| Exam Board | Edexcel |
| Topic | Chemistry Lab Skills 1 |
| Sub Topic | Alcohols \& Halogenoalkanes |
| Booklet | Mark Scheme 2 |


| Time Allowed: | 57 minutes |
| :--- | :---: |
| Score: | $/ 47$ |
| Percentage: | $/ 100$ |

Grade Boundaries:

| A* | A | B | C | D | E | U |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $>85 \%$ | $' 77.5 \%$ | $70 \%$ | $62.5 \%$ | $57.5 \%$ | $45 \%$ | $<45 \%$ |


| Question <br> Number | Acceptable Answer | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 ( a ) ( i )}$ | From maximum value of m/e <br> OR <br> From maximum value of m/z <br> OR <br> From maximum mass / charge ratio <br> OR <br> From (position of) peak furthest to <br> right of spectrum (excluding small <br> peaks due to isotopes) | Just "highest <br> value" <br> Biggest peak <br> Highest peak | $\mathbf{1}$ |
|  | ALLOW <br> Value furthest to the right hand side <br> from (position of) last peak <br> "line" for peak <br> IGNORE <br> Molecular ion |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 a ( i i )}$ | $\mathrm{x}=5 \quad \mathrm{y}=11$ |  | $\mathbf{1}$ |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 1(b) |  <br> TE on (a)(ii) for a correct tertiary alcohol with the number of $C$ atoms given in (a) (ii) <br> ALLOW <br> Partial display eg $-\mathrm{OH},-\mathrm{CH}_{3},-\mathrm{C}_{2} \mathrm{H}_{5}$ | Structure shown as fully structural (no bonds shown) <br> skeletal formula <br> -HO Bonds should not go from C to H of OH | 1 |


| Question <br> Number | Acceptable Answer | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 ( c ) ( i )}$ | Hydrogen chloride / hydrochloric acid <br> / HCl / HCl(aq) |  | $\mathbf{1}$ |



| Question <br> Number | Acceptable Answer | Reject | Mark |
| :--- | :--- | :--- | :---: |
| 1(d) | Alcohol has a peak for O-H bond <br> OR <br> ether has no peak for O-H bond <br> ALLOW <br> Alcohol has a peak for <br> C-OH / C-O-H / -OH | Just 'alcohol has <br> an OH bond / <br> group' | $\mathbf{1}$ |
|  | OR <br> I dentification from C-O if stated <br> that C-O in ether absorbs at a <br> different wavenumber from C-O in <br> alcohol / ether has C-O-C | Just identification <br> from C-O without <br> detail <br> C-O peak higher <br> in ether |  |
| OR <br> Look at fingerprint region and <br> compare with a compound of known <br> identity | ALLOW <br> Use of " absorption / stretch / <br> vibration / wave number / reading / <br> drop / trough" instead of peak <br> R-O for C-O | range / spectrum <br> instead of peak |  |
| IGNORE "ester" if apparently written <br> by mistake for "ether" <br> Broad and sharp (peaks) |  |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{2 ( a )}$ | Orange to green / blue / brown <br> ALLOW <br> Orange to blue-green <br> Orange to dark green |  | $\mathbf{1}$ |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| 2(b) | To prevent solvent boiling / <br> vaporising / escaping (from mouth of <br> flask) | ALLOW <br> Solvent may ignite / is flammable <br> Reactant / product / butan-2-ol / <br> butanone <br> are prevented from <br> boiling / vaporising / escaping (from <br> mouth of flask) | IGNORE <br> Comments on sulfuric acid spray <br> being corrosive <br> Butan-2-ol / solvent / butanone is <br> volatile or has a low boiling <br> temperature |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 2(c) | (Purpose:) removes / neutralizes <br> (excess) acid <br> (Method:) Put in a (stoppered) <br> separating funnel / tap funnel <br> with sodium hydrogencarbonate (and <br> shake the mixture) <br> Open the tap at intervals / remove stopper at intervals / release pressure at intervals <br> ALLOW <br> Pressure builds up because carbon dioxide forms <br> Final mark can be awarded if washing is carried out in a stoppered flask <br> IGNORE comments on separating organic product after washing | Removes impurities | 3 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{2 ( d )}$ | Drying agent / removes water / <br> removes moisture | Dehydrating <br> agent <br> Reacts with water <br> Removes <br> impurities | $\mathbf{1}$ |
|  | ALLOW <br> Absorbs water | (d) |  |




| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{2 ( f ) ( i )}$ | $(5.0 / 0.805)=6.2112 / 6.211 / 6.21 /$ <br>  <br>  <br>  <br>  <br> ALLOW comma for decimal point | $6\left(\mathrm{~cm}^{3}\right)$ | $\mathbf{1}$ |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 2(f)(ii) | There are many possible correct methods for this calculation. Two of these methods are shown below: <br> Look at final answer: <br> 4.8(2) ( g ) scores 3 marks, <br> 1.97 (g) OR 3.08 ( g ) scores 2 marks <br> For other answers, look at working; do not penalise intermediate rounding. <br> 0.042 moles butanone gives final answer of 4.9 (g) <br> First mark: $\begin{equation*} 3.0 \mathrm{~g} \text { butanone }=0.041609 \mathrm{~mol} \tag{1} \end{equation*}$ <br> THEN Route 1: $\begin{align*} & \text { Second mark } \\ & \text { Need to make } \frac{(0.0416 \times 100)}{64} \\ & =0.065 \mathrm{~mol} \tag{1} \end{align*}$ <br> Third mark $\text { Mass butanol }=(0.065 \times 74.1)$ $\begin{equation*} =4.8175 / 4.8(2)(\mathrm{g}) \tag{1} \end{equation*}$ <br> OR Route 2: <br> Second mark <br> Mass of 0.041609 mol butanol $=0.041609 \mathrm{x}$ $\begin{equation*} 74.1=3.082(\mathrm{~g}) \tag{1} \end{equation*}$ <br> (Use of 0.042 mol gives 3.11 (g)) <br> Third mark <br> Mass butanol needed $=$ $(3.082 \times 100 / 64)=4.8175 / 4.8(2)(\mathrm{g})(\mathbf{1})$ <br> IGNORE sf except 1 sf at all stages Rounding may be done at different stages of calculation and intermediate values may not be shown |  | 3 |


| Question <br> Number | Acceptable answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{3 ( a ) ( i )}$ | Orange to green / blue / brown | Combinations of <br> blue and green <br> Green to orange |  |
|  | ALLOW <br> Dark green / green- brown | $\mathbf{1}$ |  |


| Question <br> Number | Acceptable answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{3 ( a ) ( i i )}$ | $\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOH}$ <br> Double bond need not be shown <br>  <br>  <br>  <br>  <br> ALLOW $\mathrm{CO}_{2} \mathrm{H}$ for COOH | $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{2}$ <br> Formulae not <br> showing H <br> atoms |  |
|  | ALLOW |  |  |


| Question <br> Number | Acceptable answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 3(b) | Any TWO of | (Bubbles / effervescence / fizzing | Just "Gas forms" <br> Bubbles form if <br> incorrect gas <br> identified. |
| Sodium dissolves / disappears <br> White residue / solid / <br> ALLOW <br> White precipitate <br> ALLOW <br> Rise in temperature / gets hotter / <br> heat is given out <br> IGNORE <br> Moves / Floats / Sinks / Catches fire <br> / Hydrogen given off | White solid <br> dissolves <br> Crystals form |  |  |


| Question <br> Number | Acceptable answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{3 ( c ) ( i )}$ | Brown / red-brown / orange / yellow <br> / combinations of these colours to <br> colourless | Red to colourless <br> Clear for <br> colourless <br> Paler for <br> colourless <br> White for <br> colourless | $\mathbf{1}$ |


| Question Number | Acceptable answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 3(c)(ii) |  |  |  |
|  |  | Br at left hand end without a bond to it |  |
|  | ALLOW |  |  |
|  |  |  |  |
|  | ALLOW |  |  |
|  |  |  |  |
|  | IGNORE orientation of Br and OH , eg both Br pointing down IGNORE lengths of bonds |  |  |
|  | Check that there are 6C in formula |  | 1 |


| Question <br> Number | Acceptable answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{3 ( d ) ( i )}$ | Purple / pink to colourless | Clear for <br> colourless <br> White for <br> colourless | Green / orange <br> for colourless <br> Lilac for purple |


| Question <br> Number | Acceptable answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| 3(d)(ii) | OH |  | OH <br> OH at left <br> hand end <br> without a <br> bond to it <br> Bond to H of <br> OH group |
|  | IGNORE orientation of OH, eg both OH <br> pointing down <br> IGNORE lengths of bonds <br> Check that there are $\mathbf{6 C}$ in formula | $\mathbf{1}$ |  |


| Question <br> Number | Acceptable answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3 ( e )}$ | hex-5-en-1-ol <br> (alkene/ C=C at 1669-1600 $\left(\mathrm{cm}^{-1}\right)$ <br> Correct identification and one correct <br> piece of evidence (1) <br> Correct identification with two pieces of <br> evidence (2) <br> Correct identification and correct bonds <br> quoted without any data can score 1. | $\mathbf{2}$ |  |


| Question <br> Number | Acceptable answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{4 ( a ) ( i )}$ | Dehydrating agent / dehydration/ <br> removes (elements of) water / <br> removes $\mathrm{H}_{2} \mathrm{O} /$ eliminates water / <br> eliminates H and OH <br> IGNORE reference to catalyst | Drying agent <br> Just elimination |  |


| Question Number | Acceptable answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 4(a)(ii) | Corrosive / burns skin (1) | Just "harms skin" Toxic |  |
|  | Wear gloves | Use tongs Avoid spillage |  |
|  | Second mark depends on first being corrosive or harms skin or irritant | Use fume cupboard | 2 |


| Question <br> Number | Acceptable answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{4 ( b )}$ | t mark <br> Apparatus should not be completely <br> sealed / put vent in apparatus / <br> leave gap between condenser and <br> receiving flask / insert gas outlet / <br> use receiving flask with opening (1) <br> ALLOW <br> "Open end of apparatus for pressure <br> release" <br> Second mark <br> Move (bulb of) thermometer to <br> opposite opening to condenser (1) <br> These points may be shown on <br> diagram. | Just "Move <br> thermometer up"/ <br> "position in neck <br> of flask" / <br> "position in mouth <br> of flask" | $\mathbf{2}$ |


| Question <br> Number | Acceptable answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 4(c)(i) | EITHER <br> Cyclohexene only forms London <br> forces / cyclohexene only forms <br> van der Waals forces / cyclohexene <br> can only form weak forces / <br> cyclohexene is non-polar AND water <br> is polar | Just <br> "cyclohexene is <br> non-polar" <br> Cyclohexene <br> forms <br> permanent <br> dipole-dipole <br> forces |  |
|  | Hydrogen bonds would be broken if <br> cyclohexene mixed with water / <br> cyclohexene cannot form hydrogen <br> bonds with water / cyclohexene <br> cannot replace hydrogen bonds with a <br> strong bond / cyclohexene cannot <br> form bonds with water of comparable <br> strength (to original ones) | Just "there are <br> hydrogen bonds <br> in water" |  |
| OR (alternative approach) <br> Hydrogen bonds would be broken if <br> cyclohexene mixes with water (1) |  |  |  |
| Only weaker London forces would <br> replace them | (1) |  |  |


| Question <br> Number | Acceptable answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| 4(c)(ii) | Separating funnel with tap (and <br> stopper) | Filter funnel <br> Buchner funnel |  |
|  | ALLOW <br> Any shaped tube with opening at top <br> which can be stoppered and tap at <br> bottom | Very large <br> opening at the <br> top of the funnel. | lyclohexene in upper layer (1) <br> Don't penalise if labelled  <br> Cyclohexane, not -ene.  |
| Mark independently | layers |  |  |


| Question <br> Number | Acceptable answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{4 ( d ) ( i )}$ | (anhydrous) calcium chloride $/ \mathrm{CaCl}_{2}$ <br> / magnesium sulfate $/ \mathrm{MgSO}_{4} /$ <br> sodium sulphate $/ \mathrm{Na}_{2} \mathrm{SO}_{4}$ | Other compounds, <br> even if anhydrous <br> Incorrect formulae <br> (concentrated) <br> sulfuric acid | ALLOW <br> silica gel |


| Question <br> Number | Acceptable answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{4 ( d ) ( i i )}$ | (cloudy) liquid would go clear/ liquid <br> becomes less cloudy | Volume <br> decreases <br> Water layer <br> disappears <br> Viscosity changes | $\mathbf{1}$ |


| Question <br> Number | Acceptable answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{4 ( e )}$ | (re)distillation (collecting liquid close <br> to its boiling point) | collecting liquid <br> more than 5. <br> from its boiling <br> point) |  |
| ALLOW <br> Simple distillation <br> Fractional distillation <br> Correct description of process | Filtering | $\mathbf{1}$ |  |


| Question Number | Acceptable answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 4(f)(i) | $\begin{align*} & \text { Mass cyclohexanol }=(0.100 \times 100) \\ & =10.0 / 10 \mathrm{~g}  \tag{1}\\ & \text { Volume }=\frac{10.0}{0.962} \\ & =10.395 / 10.40 / 10.4\left(\mathrm{~cm}^{3}\right) \tag{1} \end{align*}$ <br> Second mark TE from mass of cyclohexanol calculated | 10/ 10.39( $\mathrm{cm}^{3}$ ) | 2 |


| Question Number | Acceptable answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 4(f)(ii) | EITHER |  |  |
|  | $\begin{align*} & \text { Max yield }=(0.100 \times 82) \\ & =8.20 / 8.2 \mathrm{~g} \tag{1} \end{align*}$ | 0 overall if yield greater than $100 \%$ |  |
|  | $\% \text { yield }=\frac{(5.50 \times 100)}{8.20}=$ |  |  |
|  | 67.073/ 67.1/67\% (1) |  |  |
|  | Second mark TE from mass of cyclohexene, but NOT if max yield $=$ 10.4 or 10 (ie from volume of cyclohexanol or molar mass of cyclohexanol). |  |  |
|  | OR |  |  |
|  | $\text { Mol cyclohexene }=\frac{5.5}{82}$ |  |  |
|  | $=0.067073$ |  |  |
|  | Ignore sf except 1 sf |  |  |
|  | $\% \text { yield }=\frac{(0.067073 \times 100)}{0.1}=$ |  |  |
|  | 67.073/ 67.1/ 67\% (1) |  |  |
|  | Correct answer with no working scores 2 <br> Use of 84 as molar mass cyclohexene scores max 1 |  |  |
|  | I gnore SF except 1 |  | 2 |

