Chemical Equations: Titrations

Mark Scheme

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Торіс	Chemistry Lab Skills 1
Sub Topic	Chemical Equations: Titrations
Booklet	Mark Scheme

Time Allowed:	
	90 minutes
Score:	/76
Percentage:	/100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question Number	Acceptable Answers		Reject	Mark
1(a)(i)	(Freshly prepared) starch (solution/indicator)			2
	ALLOW Startch	(1)		
	Blue-black / blue / dark blue/ black to colourless		Purple to	
	IGNOREto clear	(1)		
	Mark independently			

Question Number	Acceptable Answers	Reject	Mark
1(a)(ii)	Pale yellow/straw coloured	Brown/yellow/brown- yellow/tawny	1

In 1(b) to (d)(ii)

Penalise rounding errors **only once**

Penalise 1 SF only once

(Both may be penalised)

Question Number	Acceptable Answers	Reject	Mark
1(b)	Fully scroll down answer		1
	Number of moles of electrons		
	$= \frac{0.2 \times 15 \times 60}{96500}$ = 1.865 x 10 ⁻³ / 0.001865 (mol)		
	Correct answer with no working scores 1		
	IGNORE SF except 1SF		
	IGNORE electrons for units		

Question Number	Acceptable Answers			Reject	Mark	
1(c)(i)	19.45	18.6(0)	19.05	18.7(0) (cm ³)		1

Question Number	Acceptable Answers	Reject	Mark
1(c)(ii)	Method 1		2
	Titres/results/runs 1 and 3 should be discarded (1)		
	as they are not concordant/within (±) 0.2 cm ³		
	IGNORE		
	The(ir) first reading is zero		
	OR		
	Reading(s) too far from the others (1)		
	Method 2		
	Run 1 as rangefinder/rough (1)		
	Run 2 as not concordant / within (±) 0.2 cm ³ (1)		
	Use method giving higher mark		

Question Number	Acceptable Answers	Reject	Mark
1(c)(iii)	18.65/18.7 (cm ³)	18.6	1
	ALLOW		
	TE from (i) and (ii)		
	Runs 2, 3, 4 give 18.783/18.78/18.8		
	Runs 1, 3, 4 give 19.067/19.07/19.1	19.06	
	Runs 3, 4 give 18.875/ 18.88/ 18.9	18.87	

Question Number	Acceptable Answe	ers	Reject	Mark
1(c)(iv)	<u>18.65 x 0.0100</u> 1000	= 1.865 x 10 ⁻⁴ / 0.0001865 (mol)		1
	TE from (iii)			

Question Number	Acceptable Answers	Reject	Mark
1(c)(v)	1.865 x 10 ⁻⁴ x 100/10		1
	= 1.865 x 10 ⁻³ / 0.001865(mol)		
	TE from (iv)		

Question Number	Acceptable Answers		Reject	Mark
1(d)(i)	$2S_2O_3^{2-}(aq) \rightarrow S_4O_6^{2-}(aq) + 2e(-)$ (1)			2
	$2I^{-}(aq) \rightarrow I_{2}(aq) + 2e(-)$	(1)		
	OR			
	$2S_2O_3^{2-}(aq) - 2e(-) \rightarrow S_4O_6^{2-}(aq)$ (1)			
	$2I^{-}(aq) - 2e(-) \rightarrow I_2(aq)$	(1)		

Question Number	Acceptable Answers	Reject	Mark
1(d)(ii)	1.865 x 10 ⁻³ / 0.001865 (mol) of electrons		1
	lost/gained/equals/reacts with/taken from/ given to/equivalent to		
	1.865 x 10 ⁻³ /0.001865 (mol) S ₂ O ₃ ²⁻		
	ΝΟΤΕ		
	Numbers do not have to be the same eg 0.001865 electrons with 0.001906 $S_2O_3^{2-}$		
	OR		
	1 mol of electrons equivalent to 1 mol $S_2O_3^{2-}$		
	ALLOW		
	Any indication of 1:1 ratio for electrons: $S_2O_3^{2-}$		
	IGNORE		
	Answers referring to equations only.		

Question Number	Acceptable Answe	ers		Reject	Mark
1(e)(i)	Uncertainty in titr (±)0.51/0 OR	e value: 0.514%			
	<u>2 x 0.05</u> x 100 19.45	= = 0.5	(1)		
	Uncertainty in the measurement: $\frac{(0.04 \times 100)}{(10.0)} = (4)$	e pipette ±)0.4%	(1)		

Question Number	Acceptable Answers	Reject	Mark
1(e)(ii)	The uncertainty is not significant because the data are rounded to 1 SF / produce a ratio to the nearest whole number	is significant	1
	ALLOW		
	Uncertainties are very small/ < 5% / < 1%	Uncertainties	
	Other reasonable points:	do not matter as	
	eg insignificant as only equation is required	titres have been averaged	

(Total for Question 1 = 16 marks)

Number	ble Answers	Reject	Mark
2(a) To avoid ALLOW To preve	(loss of solid due to) 'spitting' ent loss of solid/reactant	Spillage Removal of impurities	1

Question Number	Acceptable Answers	Reject	Mark
2 (b)	Heat to constant mass/weight		1
	IGNORE		
	Keep heating until		
	no more steam/misty fumes are given off OR		
	there is no further reaction		
	OR the crystals turn to powder		

Question Number	Acceptable Answers	Reject	Mark
2 (c)	Anhydrous (sodium carbonate)	Dry/Dehydrated	1

Question Number	Acceptable Answers		Reject	Mark
2 (d)(i)	Additional Comments Throughout 3d, correct answers score full marks and ignore SF (including 1SF) and penalise incorrect units once only			2
	$(M_r Na_2CO_3 =)$ $2x23 + 12 + 3x16 / 106 (g mol^{-1})$ $(1.06 \div 106 =) 0.01 / 1.0 x 10^{-2} (mol)$ TE for incorrect M _r	(1) (1)		

Question Number	Acceptable Answers	Reject	Mark
2(d)(ii)	(m = 2.50 - 1.06 = 1.44(g)) $n = 1.44 \div 18 =)$ 0.08 (mol)		1
Question Number	Acceptable Answers	Reject	Mark
2(d)(iii)	$(0.08 \div 0.01 =) 8$ TF from (d)(i) and (d)(ii)		1

Question	Acceptable Answers	Reject	Mark
Number			
2 (e)	Washings/Rinsing (from the beaker) should		1
	have been transferred to the volumetric		
	flask		

Question Number	Acceptable Answers	Reject	Mark
2 (f)	Titration 1 is not concordant/a range finder/ an overshot/ an outlier/a trial /only a 'rough'/ more than 0.2 cm ³ from the other 2 titres		1
	Inaccurate		
	OR (Titrations 2 and 3) are within 0.1/0.2 cm ³ /concordant		
	IGNORE More accurate		

Question Number	Acceptable Answers	Reject	Mark
2 (g)(i)	Throughout 3g ignore SF except 1SF		1
	(Mean titre = 16.5 cm ³ / 0.0165 dm ³)		
	$n=(0.10 \times 0.0165=) 1.65 \times 10^{-3}/0.00165 \text{ (mol)}$		
	Correct answer with no working scores (1)		
	No TE on incorrect mean		

Question Number	Acceptable Answers	Reject	Mark
2 (g)(ii)	$n = (1.65 \times 10^{-3} \div 2 =)$ 8.25 x 10 ⁻⁴ /0.000825 (mol)		1
	TE Ans to (g) ÷ 2		

Question Number	Acceptable Answers	Reject	Mark
2 (g)(iii)	n(8.25 x 10 ⁻⁴ x 10=)		1
	8.25 x 10 ⁻³ /0.00825 (mol)		
	TE Ans to (g)(ii) x 10		

Question Number	Acceptable Answers		Reject	Mark
2 (g)(iv)	$M_r = (2.50 \div 8.25 \times 10^{-3} =) 303.03$	(1)		2
	(303.03 -106 = 197.03 then 197.03 ÷ 18=) (x =) 10.946/10.95/10.9/11	(1)		
	Alternative Methods			
	$\begin{split} &M_r = 106 + 18x\\ &Mass = (8.25 \times 10^{-3}) \times M_r = 0.8745 + 0.1485x\\ &2.50 = 0.8745 + 0.1485x\\ &X \!=\! (2.50 \! - \! 0.8745) \div 0.1485 = 10.946 \end{split}$	(1) (1)		
	OR Mass Na ₂ CO ₃ = $8.25 \times 10^{-3} \times 106 = 0.8745(g)$ Mass H ₂ O = $2.5 - 0.8745 = 1.6255$ Mol H ₂ O = $1,6255 \div 18 = 0.0903$ X = $0.0903 \div 8.25 \times 10^{-3} = 10.946$	(1) (1)		
	TE from previous answers Correct final answer with/without working scores	s (2)		

Question	Acceptable Answers	Reject	Mark
Number			
2(h)	Marking point 1 The number of moles of sodium carbonate would be too large OR the molar mass of hydrated salt would be too small (1)		2
	Marking point 2 Hence the value of x would be too small/low (1) MP2 is not standalone and may be awarded only if one or other of the statements for the first mark is given No TE on incorrect MP1		

(TOTAL FOR QUESTION 2 = 16 MARKS)

Question Number	Acceptable Answers	Reject	Mark
3(a)	(250 cm ³) Volumetric flask / graduated flask	Flat bottom flask Titration flask Measuring flask Measuring cylinder Conical flask Pipette Burette Beaker	1

Question Number	Acceptable Answers		Reject	Mark
3(b)(i)	(From) colourless	(1)		2
	(to) pink	(1)	to purple	
	(to) red (to) Combination of pink and red/ permanent pink		Blue to red loses both marks	
	From pink to colourless scores	(1)		

Question Number	Acceptable Answers	Reject	Mark
3(b)(ii)	As an indication of when to add drop by drop	Just "to get an estimate" It gives an idea of where the end-point is Use as a control	1
	OR Add slowly when approaching rough value OR Add a significant volume /a stated volume in region 18-23.0 cm ³ of alkali/a volume approaching range finder volume (quickly) and then slow down ALLOW It is an indication of when to slow down IGNORE To prevent overshooting Don't use in calculating mean titre The answer should show how the rough titration value is used when carrying out the accurate titration	Add slowly when reaches rough value	

Question Number	Acceptable Answers	Reject	Mark
3(b)(iii)	$\frac{(2 \times 0.050 \times 100)}{23.30}$ = (±)0.42918/ 0.4292/0.429 / 0.43/ 0.4 (%)		1

Question Number	Acceptable Answers	Reject	Mark
3(b)(iv)	23.3(0) (cm ³)		1

Question Number	Acceptable Answers	Reject	Mark
3(b)(v)	Mol NaOH = $(23.3 \times 0.1 \times 10^{-3})$ = 2.33 × 10 ⁻³ (1)		2
	Mol H ₂ A = $\frac{(23.3 \times 0.1 \times 10^{-3})}{2}$		
	$=1.165 \text{ x } 10^{-3} / 1.17 \text{ x } 10^{-3} $ (1)		
	Ignore sf except 1 sf		
	TE on 3b(iv)		
	Correct answer with no working scores 2		

Question Number	Acceptable Answers		Reject	Mark
3(b)(vi)	mol acid in 250 cm ³ = 1.165×10^{-2} /0.01165 ((1)		2
	$M_r = 1.05/1.165 \times 10^{-2}$		90 with no	
	= 90.129/ 90.1 / 90		working (just deduced from	
	Ignore sf	(1)	(c)(i))	
	Give both marks for final answer if some working is shown, even if first marking point is not shown separately.	e		
	TE from 3b(v)			
	Final answer of 901 because mol acid in 25 cm ³ is used scores (1)	ו		
	Using 1.17×10^{-3} gives $M_r = 89.7$ Using 1.2×10^{-2} gives $M_r = 87.5$ Using 1.15×10^{-2} gives $M_r = 91.3$			

Question Number	Acceptable Answers		Reject	Mark
3(c)(i)	Potassium/ sodium dichromate((VI))/ K ₂ Cr ₂ O ₇ / Na ₂ Cr ₂ O ₇		Potassium manganate(VII)/ potassium permanganate	2
	and sulfuric acid/ H ₂ SO ₄ IGNORE concentration of acid alcoholic potassium/ sodium dichromate((VI))	(1)	hydrochloric acid nitric acid	
	(Heat under) reflux Mark independently.	(1)	Just "heat"	

Question Number	Acceptable Answers	Reject	Mark
3(c)(ii)	Orange to (dark)green / blue / brown TE if one of the reagents in c(i) is potassium dichromate and the other is not coloured. TE on use of potassium manganate(VII) and sulfuric acid: Purple to colourless No TE on other incorrect reagents		1

Question Number	Acceptable Answers	Reject	Mark
3(c) (iii)	HO C HO C O HO C O H O O H Allow undisplayed O-H as above or O-H bonds shown. Ignore orientation/ bond angles		1

Total for Question 3 = 14 marks

Question Number	Acceptable Answers		Reject	Mark
4(a)	In acid: colourless In alkali: (pale) pink	(1)	Clear or white for colourless	2
	ALLOW Purple / red / magenta in alkali or combinations of colours eg purple-	-red (1)	Violet	
	Correct colours wrong way round scores	(1)		

Question Number	Acceptable Answer	Reject	Mark
4(c)(i)	35.5 x 4.18 x 10.2 = (1513.578) = 1514 (J)	1500 J 1513 J	1
	1.514 kJ IGNORE sf except 2 sf or less	1.5 kJ / 1.513 kJ	

Question Number	Acceptable Answers	Reject	Mark
4(c)(ii)	$(1513.578/3.00 \times 10^{-2} = 50452.6 \text{ J})$		2
	$\Delta H = -50.5 \text{ (kJ mol}^{-1}\text{)}$ Value		
	ALLOW If (c)(i) is 1510, $\Delta H = -50.3$ (kJ mol ⁻¹)		
	TE from (c)(i) e.g. If (c)(i) is 1500, $\Delta H = -50.0$ (kJ mol ⁻¹) If (c)(i) is 1513, $\Delta H = -50.4$ (kJ mol ⁻¹)		
	If (c)(i) = 20 x 4.18 x 10.2 = 852.72J Then ΔH = -28.4 (kJ mol ⁻¹) (1)		
	Sign and 3 sf if a value has been calculated (1)		

Question Number	Acceptable Answers	Reject	Mark
4(c) (iii)	Temperature is taken before heat loss occurs / before mixture cools ALLOW Because heat will be lost To reduce errors due to heat loss Temperature falls / drops quickly	To prevent heat loss Temperature rises / changes quickly	1

Question Number	Acceptable Answer	Reject	Mark
4(c)(iv)	One mark each for any TWO of the following		2
	Temperatures are monitored continuously	Monitored frequently	
	Equivalent to having more / many readings		
	More points give a more accurate line / plot	Prevents errors when drawing graphs	
	Magnetic stirrer more efficient than manual stirring / stirring is more uniform / makes temperature more uniform / makes concentration more uniform	gruphs	
	Heat loss is reduced because reaction is completed more quickly / because there is no time delay in readings	Just "Heat loss is reduced"	
	IGNORE Comments on insulation of beaker, rate of reaction as opposed to time for experiment to be completed, parallax error		
	Prevents human error		

Question Number	Acceptable Answers	Reject	Mark
4(d)(i)	Correct answer without working scores (2)		2
	(Moles of HCl) = $20.0 \times 1.50/1000$ = 3.00×10^{-2} = (Moles of NaOH)	Just `3.00 x 10 ⁻² / 0.03'	
	ALLOW Moles of HCl / NaOH = 3.00×10^{-2} (1)	1.02 and other	
	Concentration = $(3.00 \times 10^{-2} \times 10^{3} =)$ 15.50	incorrect roundings	
	1.93548 / 1.94 /1.9 (mol dm ⁻³) (1)		
	IGNORE sf except 1 sf		
	TE from first to second mark		

Question Number	Acceptable Answers	Reject	Mark
4(d)(ii)	$\frac{2 \times 0.05}{5.00} \times 100\%$	Two answers eg 0.02 and 2	1
	$= (\pm)2\%$		

Question Number	Acceptable Answers	Reject	Mark
4(e)(i)	To make temperature (change) bigger / (more) obvious / (more) significant	To allow reaction to go to completion	1
	OR To make more exothermic / to produce more heat energy / so more heat is given out OR To reduce percentage error in temperature (change)	To increase enthalpy change Just 'to increase the heat'	
	IGNORE Additional comments on rate increasing if rest of answer is correct Reference to volumes Easier to measure temperature change		

Question Number	Acceptable Answer	Reject	Mark
4(e)(ii)	It is corrosive / burns skin / damages eyes / caustic ALLOW Damages skin IGNORE More irritant or harmful or dangerous NaOH is an alkali	Toxic Just "damaging" Flammable	1

Total for Question 4 = 17 marks

Question Number	Acceptable answers	Reject	Mark
5(a)(i)	No sharp colour change / colour change gradual / difficult to see end- point/ end-point not clear / end-point not obvious / no specific colour change at end-point / colour change hard to distinguish many different colours during the vertical section of a pH curve	Colour changes slowly Does not give accurate results No significant colour change end-point not visible Colour does not change in vertical section of pH curve Forms various colours with acid and alkali	
		Comments about suitability for weak/ strong acids	1

Question Number	Acceptable answers		Reject	Mark
5(a)(ii)	Suitable acid-base indicator	(1)	Litmus	
	correct colours	(1)		
	Likely answers:	(1)		
	red in acid, yellow in alkali	(1) (1)	Orange for red	
	Phenolphthalein colourless in acid, pink / purple red in alkali	(1) / (1)	Spelling is not a reasonable match for pronunciation	
	ALLOW Bromothymol blue Yellow in acid, blue in alkali	(1) (1)		
	No TE on colours for litmus Second mark depends on first			2

Question Number	Acceptable answers	Reject	Mark
5(b)(i)	$\frac{(22.80 \times 0.250)}{1000} =$	6 x 10 ⁻³	
	5.70 x 10 ⁻³ / 5.7 x 10 ⁻³ / 0.0057		1

Question	Acceptable answers	Reject	Mark
Number			
5(b)(ii)	5.70 x 10 ⁻³ / 5.7 x 10 ⁻³ / 0.0057		
	TE: Same as 3b(i)		1

Question Number	Acceptable answers	Reject	Mark
5(b)(iii)	$(2.00 \times 10^{-2} - 5.70 \times 10^{-3})$ = 1.43 x 10 ⁻² / 14.30 x 10 ⁻³ / 0.0143 TE 2.00 x 10 ⁻² – answer from 3b(ii)	Numbers obtained without having done a subtraction	1

Question Number	Acceptable answers	Reject	Mark
5(b)(iv)	Mol Mg(OH) ₂ = answer to $3b(iii) / 2$ (1) = 7.15 x $10^{-3} / 0.00715$ mass = 58.3 x number of mol = 0.416845 = 0.417 (g) (1) TE for second mark based on number of moles calculated for first mark. ALLOW use of 58 instead of 58.3 (giving 0.415(g)) Correct answer with no working scores 2	Answers with more or less than 3 significant figures	
			2

Question Number	Acceptable answers	Reject	Mark
5(c)(i)	Split sample into two / several portions (so that titration can be repeated)	Just "repeat the titration"	
	OR make solution to a standard volume (e.g. 100cm ³) and take measured aliquots	Just " use more concentrated acid " or "Use more acid".	
		Use more accurate burettes / pipettes /	
		balance	1

Question Number	Acceptable answers		Reject	Mark
5(c)(ii)	$\frac{100 \text{ x} (2 \text{ x} 0.05)}{40.00} = (\pm) 0.250/0.259$ Doubling error in each reading (1 Final answer (1)	% 1) 1)	0.3/ 0.30%	
	0.125%/ 0.13% scores 1 mark		0.12, 0.1	2

Question Number	Acceptable answers	Reject	Mark
5(d)	Any two from		
	Use (finely) powdered magnesium hydroxide	Break magnesium hydroxide into	
	Use moderately concentrated acid / acid which is not very dilute/ acid of higher concentration / keep excess acid to minimum possible volume.	smaller pieces	
	Ensure good mixing / stir mixture	Use a more accurate thermometer	
	Measure temperature before adding magnesium hydroxide and for some time after; plot temperatures against time and extrapolate (cooling) line (to where reagents are mixed, to allow for cooling)	Just "plot temperatures against time and extrapolating"	
	IGNORE Put a lid on the container/ other comments on insulation		2