## Chemical Equations: Titrations

## Mark Scheme

| Level | International A Level |
| :--- | :--- |
| Subject | Chemistry |
| Exam Board | Edexcel |
| Topic | Chemistry Lab Skills 1 |
| Sub Topic | Chemical Equations: Titrations |
| Booklet | Mark Scheme |

## Time Allowed:

|  | 90 minutes |
| :--- | :--- |
| Score: | $/ 76$ |
| Percentage: | $/ 100$ |

Grade Boundaries:

| A* | A | B | C | D | E | U |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $>85 \%$ | $77.5 \%$ | $70 \%$ | $62.5 \%$ | $57.5 \%$ | $45 \%$ | $<45 \%$ |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ( a ) ( i )}$ | (Freshly prepared) starch <br> (solution/indicator) | (1) |  |
|  | ALLOW Startch | 2 |  |
| Blue-black / blue / dark blue/ black to <br> colourless | Purple <br> to... |  |  |
|  | IGNORE ...to clear <br> Mark independently | (1) |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ( a ) ( i i )}$ | Pale yellow/straw coloured | Brown/yellow/brown- <br> yellow/tawny | 1 |

## In 1(b) to (d)(ii)

Penalise rounding errors only once

## Penalise 1 SF only once

(Both may be penalised)

| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ( b )}$ | Fully scroll down answer |  |  |
|  | Number of moles of electrons <br>  <br> $=\frac{0.2 \times 15 \times 60}{96500}$ <br>  <br> $=1.865 \times 10^{-3} / 0.001865(\mathrm{~mol})$ | 1 |  |
|  | Correct answer with no working scores 1 <br> IGNORE SF except 1SF <br> IGNORE electrons for units |  |  |


| Question <br> Number | Acceptable Answers |  |  | Reject | Mark |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 ( c ) ( i )}$ | 19.45 | $18.6(0)$ | 19.05 | $18.7(0)\left(\mathrm{cm}^{3}\right)$ |  | 1 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 1(c)(ii) | Method 1 <br> Titres/results/runs 1 and 3 should be discarded <br> as they are not concordant/within ( $\pm$ ) $0.2 \mathrm{~cm}^{3}$ <br> IGNORE <br> The(ir) first reading is zero <br> OR <br> Reading(s) too far from the others <br> (1) <br> Method 2 <br> Run 1 as rangefinder/rough <br> Run 2 as not concordant / within <br> ( $\pm$ ) $0.2 \mathrm{~cm}^{3}$ <br> Use method giving higher mark |  | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ( c ) ( \text { iii) }}$ | $18.65 / 18.7\left(\mathrm{~cm}^{3}\right)$ | 18.6 | 1 |
|  | ALLOW |  |  |
|  | TE from (i) and (ii) |  |  |
|  | Runs 2, 3, 4 give 18.783/18.78/18.8 |  |  |
|  | Runs 1, 3, 4 give 19.067/19.07/19.1 | 19.06 |  |
|  | Runs 3, 4 give 18.875/ 18.88/18.9 | 18.87 |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ( c ) ( i v )}$ | $\frac{18.65 \times 0.0100}{1000}=1.865 \times 10^{-4} / 0.0001865(\mathrm{~mol})$ | 1 |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ( c ) ( v )}$ | $1.865 \times 10^{-4} \times 100 / 10$ <br> $=1.865 \times 10^{-3} / 0.001865(\mathrm{~mol})$ <br> TE from (iv) |  | 1 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 ( d ) ( i )}$ | $2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}(\mathrm{aq})+2 \mathrm{e}(-)$ <br> $(\mathbf{1})$ <br> $2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{e}(-)$ |  | 2 |
| $\mathbf{O R}$ |  |  |  |
| $2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})-2 \mathrm{e}(-) \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}(\mathrm{aq})$ <br> $(\mathbf{1})$ <br> $2 \mathrm{I}^{-}(\mathrm{aq})-2 \mathrm{e}(-) \rightarrow \mathrm{I}_{2}(\mathrm{aq})$ |  |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ( d ) ( i i )}$ | $1.865 \times 10^{-3} / 0.001865(\mathrm{~mol})$ of electrons... <br> lost/gained/equals/reacts with/taken from/ <br> given to/equivalent to <br> $1.865 \times 10^{-3} / 0.001865(\mathrm{~mol}) \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ <br> NOTE <br>  <br>  <br>  <br> Numbers do not have to be the same <br> eg 0.001865 electrons with $0.001906 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}$ <br> OR <br> 1 mol of electrons equivalent to 1 mol $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ <br>  <br>  <br>  <br> ALLOW <br> Any indication of $1: 1$ ratio for electrons: $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ <br> IGNORE <br> Answers referring to equations only. | 1 |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |  |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 ( e ) ( i )}$ | Uncertainty in titre value: <br> OR $\quad( \pm) 0.51 / 0.514 \%$ |  |  |  |
|  | $\frac{\mathbf{2 \times 0 . 0 5} \times \mathbf{1 0 0}=}{\mathbf{1 9 . 4 5}}=0.5$ (1) |  |  |  |
| Uncertainty in the pipette <br> measurement: <br> $\frac{(0.04 \times 100)}{(10.0)}=( \pm) 0.4 \%$ | (1) |  |  |  |

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\ \hline \text { 1(e)(ii) } & \begin{array}{l}\text { The uncertainty is not significant because } \\ \text { the data are rounded to 1 SF / produce a } \\ \text { ratio to the nearest whole number }\end{array} & \begin{array}{l}\text {...is } \\ \text { significant }\end{array} & 1 \\ & \text { ALLOW } & \begin{array}{l}\text { Uncertainties are very small/ <5\%/ <1\% }\end{array} & \begin{array}{l}\text { Uncertainties } \\ \text { do not } \\ \text { matter as } \\ \text { titres have } \\ \text { been } \\ \text { averaged }\end{array}\end{array}\right\}$
(Total for Question 1 = 16 marks)

## www.igexams.com

| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ( a )}$ | To avoid (loss of solid due to) ‘spitting' | Spillage | 1 |
|  | ALLOW <br> To prevent loss of solid/reactant <br> IGNORE reference to water vapour | Removal of <br> impurities |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 2(b) | Heat to constant mass/weight |  |  |
| IGNORE |  |  |  |
| Keep heating until .... |  |  |  |
| no more steam/misty fumes are given <br> off <br> OR <br> there is no further reaction <br> OR <br> the crystals turn to powder | 1 |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ( c )}$ | Anhydrous (sodium carbonate) | Dry/Dehydrated | 1 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 2(d)(i) | Additional Comments <br> Throughout 3d, <br> correct answers score full marks <br> and <br> ignore SF (including 1SF) <br> and <br> penalise incorrect units once only <br> $\left(\mathrm{M}_{\mathrm{r}} \mathrm{Na}_{2} \mathrm{CO}_{3}=\right)$ <br> $2 \times 23+12+3 \times 16 / 106(\mathrm{~g} \mathrm{~mol}$ <br> -1$)$ <br> $(1.06 \div 106=) 0.01 / 1.0 \times 10^{-2}(\mathrm{~mol})$ | (1) | (1) |
| TE for incorrect $\mathrm{M}_{\mathrm{r}}$ |  |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ( d ) ( i i )}$ | $(\mathrm{m}=2.50-1.06=1.44(\mathrm{~g})$ <br> $\mathrm{n}=1.44 \div 18=)$ <br> $0.08(\mathrm{~mol})$ | Reject | Mark |
| Question <br> Number | Acceptable Answers |  | 1 |
| $\mathbf{2 ( d ) ( i i i )}$ | $(0.08 \div 0.01=) 8$ <br> TE from (d)(i) and (d)(ii) |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ( e )}$ | Washings/Rinsing (from the beaker) should <br> have been transferred to the volumetric <br> flask | 1 |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ( f )}$ | Titration 1 is <br> not concordant/a range finder/ an overshot/ <br> an outlier/a trial /only a 'rough'/ <br> more than $0.2 \mathrm{~cm}^{3}$ from the other 2 titres <br> IGNORE <br> Inaccurate <br> OR <br> (Titrations 2 and 3) are <br> within 0.1/0.2 $\mathrm{cm}^{3} /$ concordant <br> IGNORE <br> More accurate | 1 |  |

## www.igexams.com

| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ( g ) ( i )}$ | Throughout 3g ignore SF except 1SF |  |  |
|  | $\left(\right.$ Mean titre $\left.=16.5 \mathrm{~cm}^{3} / 0.0165 \mathrm{dm}^{3}\right)$ |  | 1 |
|  | $\mathrm{n}=(0.10 \times 0.0165=) 1.65 \times 10^{-3} / 0.00165(\mathrm{~mol})$ |  |  |
|  | Correct answer with no working scores (1) |  |  |
|  | No TE on incorrect mean |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ( g ) ( i i )}$ | $\mathrm{n}=\left(1.65 \times 10^{-3} \div 2=\right)$ <br>  <br>  <br> $8.25 \times 10^{-4} / 0.000825(\mathrm{~mol})$ <br>  <br>  <br> TE Ans to $(\mathrm{g}) \div 2$ |  | 1 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ( g ) ( \text { iii } )}$ | $\mathrm{n}\left(8.25 \times 10^{-4} \times 10=\right)$ |  | 1 |
|  | $8.25 \times 10^{-3} / 0.00825(\mathrm{~mol})$ |  |  |
|  | TE Ans to $(\mathrm{g})(\mathrm{ii}) \times 10$ |  |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 2(g)(iv) | $\begin{align*} & \mathrm{M}_{\mathrm{r}}=\left(2.50 \div 8.25 \times 10^{-3}=\right) 303.03  \tag{1}\\ & (303.03-106=197.03 \text { then } \\ & 197.03 \div 18=) \\ & (x=) 10.946 / 10.95 / 10.9 / 11 \tag{1} \end{align*}$ <br> Alternative Methods $\begin{align*} & M_{r}=106+18 x \\ & \text { Mass }=\left(8.25 \times 10^{-3}\right) \times M_{r}=0.8745+0.1485 x  \tag{1}\\ & 2.50=0.8745+0.1485 x \\ & X=(2.50-0.8745) \div 0.1485=10.946 \tag{1} \end{align*}$ <br> OR <br> Mass $\mathrm{Na}_{2} \mathrm{CO}_{3}=8.25 \times 10^{-3} \times 106=0.8745(\mathrm{~g})$ <br> Mass $\mathrm{H}_{2} \mathrm{O}=2.5-0.8745=1.6255$ <br> Mol $\mathrm{H}_{2} \mathrm{O}=1,6255 \div 18=0.0903$ $\begin{equation*} x=0.0903 \div 8.25 \times 10^{-3}=10.946 \tag{1} \end{equation*}$ <br> TE from previous answers <br> Correct final answer with/without working scores (2) |  | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ( h )}$ | Marking point 1 <br> The number of moles of sodium carbonate would be <br> too large <br> OR <br> the molar mass of hydrated salt would be too small <br> (1) | $\mathbf{2}$ |  |
|  | Marking point 2 <br> Hence the value of x would be too small/low (1) <br> MP2 is not standalone and may be awarded only if <br> one or other of the statements for the first mark is <br> given <br> No TE on incorrect MP1 |  |  |

## www.igexams.com

| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3 ( a )}$ | $\left(250 \mathrm{~cm}^{3}\right)$ Volumetric flask / graduated <br> flask | Flat bottom flask <br> Titration flask <br> Measuring flask <br> Measuring cylinder <br> Conical flask <br> Pipette <br> Burette <br> Beaker | 1 |


| Question <br> Number | Acceptable Answers | Reject | Mark |  |
| :--- | :--- | ---: | :--- | :--- |
| $\mathbf{3 ( b ) ( i )}$ | (From) colourless (1) <br> (to) pink (1) <br> ALLOW  <br> (to) red  <br> (to) Combination of pink and red/  <br> permanent pink  <br> From pink to colourless scores  | (1) | Blue to red loses <br> both marks |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3 ( b ) ( i i )}$ | As an indication of when to add drop by <br> drop | Just "to get an <br> estimate" <br> It gives an idea of <br> where the end-point is <br> Use as a control | 1 |
|  | OR <br> Add slowly when approaching rough <br> value <br> OR <br> Add a significant volume /a stated <br> volume in region 18-23.0 cm ${ }^{3}$ of <br> alkali/a volume approaching range <br> finder volume (quickly) and then slow <br> down <br> ALLOW <br> It is an indication of when to slow down <br> IGNORE <br> reaches rough value | To prevent overshooting <br> Don't use in calculating mean titre | The answer should show how the rough <br> titration value is used when carrying <br> out the accurate titration |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 3(b)(iii) | $\frac{(2 \times 0.050 \times 100)}{23.30}$ |  |  |
| $( \pm) 0.42918 / 0.4292 / 0.429 / 0.43 /$ <br> $0.4(\%)$ |  | 1 |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3 ( b ) ( i v )}$ | $23.3(0)\left(\mathrm{cm}^{3}\right)$ |  | 1 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 3(b)(v) | $\begin{align*} \mathrm{Mol} \mathrm{NaOH} & =\left(23.3 \times 0.1 \times 10^{-3}\right) \\ & =2.33 \times 10^{-3} \tag{1} \end{align*}$ <br> Mol H2A $=\frac{\left(23.3 \times 0.1 \times 10^{-3}\right)}{2}$ $\begin{equation*} =1.165 \times 10^{-3} / 1.17 \times 10^{-3} \tag{1} \end{equation*}$ <br> Ignore sf except 1 sf <br> TE on 3 b (iv) <br> Correct answer with no working scores 2 |  | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 3(b)(vi) | $\begin{align*} & \mathrm{mol} \text { acid in } 250 \mathrm{~cm}^{3}=1.165 \times 10^{-2} \\ & / 0.01165  \tag{1}\\ & \mathrm{M}_{\mathrm{r}}=1.05 / 1.165 \times 10^{-2} \\ & =90.129 / 90.1 / 90 \\ & \text { Ignore sf } \tag{1} \end{align*}$ <br> Give both marks for final answer if some working is shown, even if first marking point is not shown separately. <br> TE from 3b(v) <br> Final answer of 901 because mol acid in $25 \mathrm{~cm}^{3}$ is used scores (1) <br> Using $1.17 \times 10^{-3}$ gives $M_{r}=89.7$ <br> Using $1.2 \times 10^{-2}$ gives $M_{r}=87.5$ <br> Using $1.15 \times 10^{-2}$ gives $M_{r}=91.3$ | 90 with no working ( just deduced from (c)(i)) | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 3(c)(i) | Potassium/ sodium dichromate((VI))/ <br> $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ | Potassium <br> manganate(VII)/ <br> potassium <br> permanganate | 2 |
| and sulfuric acid/ $\mathrm{H}_{2} \mathrm{SO}_{4}$ <br> IGNORE <br> concentration of acid <br> alcoholic potassium/ sodium <br> dichromate((VI)) <br> (Heat under) reflux <br> Mark independently. | (1) | hydrochloric acid <br> nitric acid | (1) Just "heat" |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 3(c)(ii) | Orange to (dark)green / blue / brown <br> TE if one of the reagents in c(i) is <br> potassium dichromate and the other is <br> not coloured. <br> TE on use of potassium manganate(VII) <br> and sulfuric acid: <br> Purple to colourless <br> No TE on other incorrect reagents | 1 |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 3(c)(iii) |  <br> Allow undisplayed $\mathrm{O}-\mathrm{H}$ as above or $\mathrm{O}-\mathrm{H}$ bonds shown. <br> Ignore orientation/ bond angles |  | 1 |


| Question <br> Number | Acceptable Answers | Reject | Mark |  |
| :--- | :--- | ---: | :--- | :---: |
| 4(a) | In acid: colourless | (1) | Clear or white <br> for colourless | $\mathbf{2}$ |
|  | In alkali: (pale) pink <br> ALLOW <br> Purple / red / magenta in alkali or <br> combinations of colours eg purple-red | Violet |  |  |
| Correct colours wrong way round <br> scores | (1) |  |  |  |


| Question <br> Number | Acceptable Answers |  | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4(b) |  |  |  |  |


| Question <br> Number | Acceptable Answer | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{4 ( c ) ( i )}$ | $35.5 \times 4.18 \times 10.2=(1513.578)=$ | 1500 J | $\mathbf{1}$ |
|  | $1514(\mathrm{~J})$ | 1513 J |  |
|  | ALLOW |  |  |
| 1.514 kJ | $1.5 \mathrm{~kJ} / 1.513 \mathrm{~kJ}$ |  |  |
|  | IGNORE sf except 2 sf or less |  |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 4(c)(ii) | $\begin{aligned} & \left(1513.578 / 3.00 \times 10^{-2}=50452.6 \mathrm{~J}\right) \\ & \Delta \mathrm{H}=-50.5(\mathrm{~kJ} \mathrm{~mol} \\ & \text {-1 }) \\ & \text { Value } \end{aligned}$ <br> ALLOW <br> If (c)(i) is $1510, \Delta \mathrm{H}=-50.3\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ <br> TE from (c)(i) <br> e.g. <br> If (c)(i) is $1500, \Delta \mathrm{H}=-50.0\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ <br> If $(\mathrm{c})(\mathrm{i})$ is $1513, \Delta \mathrm{H}=-50.4\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ <br> If $(c)(i)=20 \times 4.18 \times 10.2=852.72 \mathrm{~J}$ <br> Then $\Delta \mathrm{H}=-28.4\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ <br> Sign and 3 sf if a value has been calculated |  | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{4 ( c ) ( i i i )}$ | Temperature is taken before heat <br> loss occurs / before mixture cools |  | $\mathbf{1}$ |
|  | ALLOW <br> Because heat will be lost <br> To reduce errors due to heat loss <br> Temperature falls / drops quickly | To prevent heat <br> loss <br> Temperature rises <br> / changes quickly |  |


| Question Number | Acceptable Answer | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 4(c)(iv) | One mark each for any TWO of the following <br> Temperatures are monitored continuously <br> Equivalent to having more / many readings <br> More points give a more accurate line / plot <br> Magnetic stirrer more efficient than manual stirring / stirring is more uniform / makes temperature more uniform / makes concentration more uniform <br> Heat loss is reduced because reaction is completed more quickly / because there is no time delay in readings <br> IGNORE <br> Comments on insulation of beaker, rate of reaction as opposed to time for experiment to be completed, parallax error <br> Prevents human error | Monitored frequently <br> Prevents errors when drawing graphs <br> Just "Heat loss is reduced" | 2 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 4(d)(i) | Correct answer without working scores (2) <br> (Moles of HCl ) $=20.0 \times 1.50 / 1000$ $=3.00 \times 10^{-2}=(\text { Moles of } \mathrm{NaOH})$ <br> ALLOW <br> Moles of $\mathrm{HCl} / \mathrm{NaOH}=3.00 \times 10^{-2}$ $\begin{align*} & \text { Concentration } \left.=\frac{\left(3.00 \times 10^{-2}\right.}{15.50} \times 10^{3}=\right)  \tag{1}\\ & 1.93548 / 1.94 / 1.9\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \quad \text { (1) } \tag{1} \end{align*}$ <br> IGNORE sf except 1 sf <br> TE from first to second mark | $\begin{aligned} & \text { Just ' } 3.00 \times 10^{-2} \\ & / 0.03^{\prime} \end{aligned}$ <br> 1.93 and other incorrect roundings | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| 4(d)(ii) | $\underline{2 \times 0.05} \times 100 \%$ <br> 5.00 <br> $=( \pm) 2 \%$ | Two answers eg <br> 0.02 and 2 | $\mathbf{1}$ |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| 4(e)(i) | To make temperature (change) <br> bigger / (more) obvious / (more) <br> significant | To allow reaction <br> to go to <br> completion | $\mathbf{1}$ |
| OR <br> To make more exothermic / <br> to produce more heat energy / <br> so more heat is given out | To increase <br> enthalpy change <br> Just 'to increase <br> the heat' | OR <br> To reduce percentage error in <br> temperature (change) | IGNORE <br> Additional comments on rate <br> increasing if rest of answer is correct <br> Reference to volumes <br> Easier to measure temperature <br> change |

## www.igexams.com

| Question <br> Number | Acceptable Answer | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{4 ( e ) ( i i )}$ | It is corrosive / burns skin / damages <br> eyes / caustic | Toxic <br> Just "damaging" <br> Flammable | $\mathbf{1}$ |
|  | ALLOW <br> Damages skin <br> IGNORE <br> More irritant or harmful or dangerous <br> NaOH is an alkali |  |  |

Total for Question 4 = 17 marks

| Question <br> Number | Acceptable answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{5 ( a ) ( i )}$ | No sharp colour change / colour <br> change gradual / difficult to see end- <br> point/ end-point not clear / <br> end-point not obvious / no specific <br> colour change at end-point / colour <br> change hard to distinguish | Colour changes <br> slowly <br> Does not give <br> accurate results <br> No significant <br> colour change <br> end-point not <br> visible <br> Colour does not <br> change in vertical <br> section of pH <br> vertical section of a pH curve |  |


| Question | Acceptable answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 5(a)(ii) | Suitable acid-base indicator <br> correct colours <br> Likely answers: methyl orange red in acid, yellow in alkali <br> Phenolphthalein colourless in acid, pink / purple / red in alkali <br> ALLOW <br> Bromothymol blue Yellow in acid, blue in alkali <br> No TE on colours for litmus <br> Second mark depends on first | Litmus <br> Orange for red <br> Spelling is not a reasonable match for pronunciation | 2 |


| Question <br> Number | Acceptable answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{5 ( b ) ( i )}$ | $\frac{(22.80 \times 0.250)}{1000}=$ | $6 \times 10^{-3}$ |  |
|  | $5.70 \times 10^{-3} / 5.7 \times 10^{-3} / 0.0057$ |  | $\mathbf{1}$ |


| Question <br> Number | Acceptable answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{5 ( b ) ( i i )}$ | $5.70 \times 10^{-3} / 5.7 \times 10^{-3} / 0.0057$ <br> TE: Same as $3 \mathrm{~b}(\mathrm{i})$ |  |  |


| Question <br> Number | Acceptable answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{5 ( b ) ( \text { iii) }}$ | $\left(2.00 \times 10^{-2}-5.70 \times 10^{-3}\right)$ <br> $=1.43 \times 10^{-2} / 14.30 \times 10^{-3} / 0.0143$ <br> TE <br> $2.00 \times 10^{-2}-$ answer from 3b(ii) <br> IGNORE SF except 1 | Numbers <br> obtained without <br> having done a <br> subtraction |  |


| Question Number | Acceptable answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 5(b)(iv) | $\begin{align*} & \text { Mol } \mathrm{Mg}(\mathrm{OH})_{2}=\text { answer to } 3 \mathrm{~b}(\mathrm{iii}) / 2 \\ & =7.15 \times 10^{-3} / 0.00715  \tag{1}\\ & \text { mass }=58.3 \times \text { number of } \mathrm{mol} \\ & =0.416845 \\ & =0.417(\mathrm{~g}) \tag{1} \end{align*}$ <br> TE for second mark based on number of moles calculated for first mark. <br> ALLOW use of 58 instead of 58.3 (giving 0.415(g)) <br> Correct answer with no working scores 2 | Answers with more or less than 3 significant figures | 2 |


| Question <br> Number | Acceptable answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{5 ( c ) ( i )}$ | Split sample into two / several <br> portions (so that titration can be <br> repeated) <br> OR make solution to a standard <br> volume (e.g. 100 $\mathrm{cm}^{3}$ ) and take <br> measured aliquots | Just "repeat the <br> titration" <br> Just " use more <br> concentrated acid <br> " or "Use more <br> acid". | Use more <br> accurate burettes <br> / pipettes / <br> balance |


| Question <br> Number | Acceptable answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{5 ( c ) ( i i )}$ | $\frac{100 \times(2 \times 0.05)}{40.00}=( \pm) 0.250 / 0.25 \%$ | $0.3 / 0.30 \%$ |  |
|  | Doubling error in each reading (1) |  |  |
|  | Final answer | $(\mathbf{1})$ |  |
|  | $0.125 \% / 0.13 \%$ scores 1 mark | $0.12,0.1$ | $\mathbf{2}$ |


| Question <br> Number | Acceptable answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{5 ( d )}$ | Any two from <br> Use (finely) powdered magnesium <br> hydroxide <br> Use moderately concentrated acid / <br> acid which is not very dilute/ acid of <br> higher concentration / keep excess <br> acid to minimum possible volume. <br> Ensure good mixing / stir mixture | Break <br> magnesium <br> hydroxide into <br> smaller pieces | Use a more <br> accurate <br> thermometer |
| ALLOW <br> Measure temperature before adding <br> magnesium hydroxide and for some <br> time after; plot temperatures against <br> time and extrapolate (cooling) line (to <br> where reagents are mixed, to allow for <br> cooling) <br> IGNORE <br> Put a lid on the container/ other <br> comments on insulation | Just "plot <br> temperatures <br> against time <br> and <br> extrapolating" | 2 |  |

