Chemical Equations: Gases

Mark Scheme

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Торіс	Chemistry Lab Skills 1
Sub Topic	Chemical Equations: Gases
Booklet	Mark Scheme

Time Allowed:	
Score:	26 minutes /21
Percentage:	/100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question Number	Acceptable Answers	Reject	Mark
1(a)	ST Add PCl ₅ / phosphorus(V) chloride / phosphorus pentachloride /SOCl ₂ / thionyl chloride / sulphur dichloride oxide (1)	Acidified PCl ₅ / PCl ₅ (aq) Acidified dichromate(VI) PCl ₃	2
	RESULT Mark depends on correct reagent, but allow PCl₅ (aq)	Test to form an ester	
	Steamy / misty / white fumes ALLOW Gas for fumes (1)	Any smoke Just "HCl fumes" Just "gas turns litmus red"	
	Ignore incorrect identification of fumes		
	OR		
	TEST Add sodium / Na (1)		
	RESULT Mark depends on correct reagent		
	Effervescence / bubbling / fizzing	Just "hydrogen"	
	Ignore incorrect identification of fumes and tests for products		
	white solid (forms) / sodium dissolves		
	mixture gets hot (1)		
	TEST Add sodium / Na (1) RESULT Mark depends on correct reagent Effervescence / bubbling / fizzing Ignore incorrect identification of fumes and tests for products white solid (forms) / sodium dissolves	Just "hydrogen"	

Question Number	Acceptable Answers	Reject	Mark
1(b)	(primary / secondary / tertiary) Alcohol and carboxylic acid ALLOW ROH and RCOOH R_2 CHOH/ R_3 COH for ROH C_nH_{2n+1} OH for ROH RCO ₂ H for RCOOH Phenol(s) (as one alternative) Fatty acid / alkanoic acid for carboxylic acid	diol carboxyl cyclic alcohol specific alcohol eg ethanol	1

Question Number	Acceptable Answers	Reject	Mark
1 (c)	Z identified as tertiary alcohol (1)		2
	Justification: Any one from		
	Test with litmus Not (carboxylic) acid because there is no change (in (blue) litmus paper)		
	It's an alcohol because there is no change (in (red / blue) litmus paper)		
	It is neutral /not an acid or an alkali because there is no change (in (red / blue) litmus paper)		
	Test with dichromate It is a tertiary alcohol because it can't be oxidized (by acidified dichromate(VI))/ doesn't react with acidified dichromate(VI)		
	It is not a primary or secondary alcohol because it can't be oxidized (by acidified dichromate(VI))/ doesn't react with acidified dichromate(VI)		
	IGNORE Not an amine (1)		
	If more than one justification is given, both must be correct		

Question Number	Acceptable Answers	Reject	Mark
1(d)	MP1 (0.1 mol Z produces) 0.4 mol CO ₂ OR 1 mol Z produces 4 mol CO ₂ (1) MP2 (dependent on MP1 awarded) So Z has 4C atoms ALLOW Formula shown with 4C (1) MP3 (stand alone) H_{H-C-H}	Just 9.6/24 = 0.4 with no reference to what numbers refer to or if not applied	3
	OR		
	СН ₃ СН ₃ —С—ОН СН ₃	CH ₃ CH ₃ —C—HO CH ₃	
	ALLOW undisplayed CH_3 and OH as above Skeletal formula +OH (1)	Only if bond clearly shown to the H of OH	

Question Number	Acceptable Answers	Reject	Mark
1(e)(i)	Molecular ions have same <i>m/e</i> ALLOW same molecular ion isomers have same molar mass / molecular mass molecular ion with same mass same maximum <i>m/e</i> value same peak furthest to right same last peak Parent ion / M ⁺ for molecular ion IGNORE Reference to peak heights	Same fragments Same <i>m/e</i> value for highest peak Similar for "same"	1

Question Number	Acceptable Answers	Reject	Mark
1(e)(ii)	They both have an (absorption) peak for (wavenumber of) alcohol / hydroxyl group / O-H ALLOW both have peak for –OH / OH	Absorption for C-OH	1
	frequency / wavelength for wavenumber		
	wavenumber values have peak with specific shape for OH		

Total for Question 1 = 10 marks

Question Number	Acceptable Answers	Reject	Mark
2(a)	(Bubble into) lime water / calcium hydroxide (solution) / Ca(OH) ₂ ((aq)) and Goes cloudy / white precipitate forms / turns milky / turns chalky IGNORE extinguishes a lighted splint	Goes muddy Turns misty	1

Question Number	Acceptable Answers	Reject	Mark
2(b)	Flask stoppered with connection to apparatus in which gas can be collected. ALLOW Either bung in neck or side arm sealed IGNORE Small gaps between bung and mouth of flask Heater under flask (1)	Large gaps in connection to flask / unstoppered flask Delivery tube through wall of trough	2
	Syringe OR inverted burette/ inverted measuring cylinder in trough of water ALLOW Tubes without graduation marks shown if labelled as burette, syringe or measuring cylinder (1)	Burette or measuring cylinder without water (Test) tube without graduation marks	

Question Number	Acceptable Answers	Reject	Mark
2(c)	(Mol gas = 41/24000 =) 1.7083 x 10 ⁻³ / 0.0017083 (mol)		1
	Ignore sf except 1sf Ignore lack of units	Incorrect units	

Question Number	Acceptable Answers	Reject	Mark
2(d)	Correct answer of 87.8 without working scores 2		2
	Mol $XCO_3 = 1.7083 \times 10^{-3}$ (1)		
	Mass of 1 mol = $(0.15/1.7083 \times 10^{-3})$ = 87.8		
	(Use of 1.7 gives mass 88.2 use of 1.71 gives 87.7)		
	Ignore sf except 1 sf (1)		
	TE from 2c	Incorrect units but	
	Ignore lack of units	do not penalise if already penalised in (c).	

Question Number	Acceptable Answers	Reject	Mark
2(e)	Relative atomic mass X = (87.8- (12+48)) = 27.8 X = Mg	Element with no justification.	1
	ALLOW Mg ²⁺ No mark for identification of Mg without	Identification as Sr because 2(d) gives 88	
	relative atomic mass or some working. ALLOW Calculation of atomic mass shown in (d) TE from 2d		

Question Number	Acceptable Answers	Reject	Mark
2(f)	(Some) carbon dioxide dissolved in the dilute hydrochloric acid / water		1
	CO ₂ reacts with water	CO_2 reacts with hydrochloric acid.	
	Ignore references to standard conditions and faulty apparatus	Impure carbonate Impure acid Incomplete reaction Side reactions	

Question Number	Acceptable Answers	Reject	Mark
2(g)	No colour/ no change (to flame) ALLOW Colourless flame TE from incorrect Group 2 metal in 2(e): Ca (brick) red/ yellow-red Sr crimson/ (dark) red Ba green	White/ bright light Answers about Mg metal No flame More than one colour given	1

Question Number	Acceptable Answers	Reject	Mark
2(h)	Some sulfates are insoluble/ BaSO₄ is insoluble/ Sulfates become less soluble going down group ALLOW A precipitate of the sulfate would form IGNORE All group II sulfates are insoluble (1) Reaction with acid will be incomplete (1) Mark independently.	Carbonates become less soluble going down group Element is insoluble in sulfuric acid. Gases other than carbon dioxide form e.g SO ₂ . Just " it would form a precipitate"	2

Total for Question 2 = 11 marks