Chemical Equations: Reacting Masses
 Mark Scheme

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	Chemistry Lab Skills 1
Sub Topic	Chemical Equations: Reacting Masses
Booklet	Mark Scheme

Time Allowed:	$\mathbf{7 4}$ minutes
Score:	$/ 61$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a)}$	To avoid (loss of solid due to) 'spitting'	Spillage	1
	ALLOW To prevent loss of solid/reactant IGNORE reference to water vapour	Removal of impurities	

Question Number	Acceptable Answers	Reject	Mark
1(b)	Heat to constant mass/weight		
IGNORE		1	
Keep heating until no more steam/misty fumes are given off OR there is no further reaction OR the crystals turn to powder			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (c)}$	Anhydrous (sodium carbonate)	Dry/Dehydrated	1

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 (d) (i)}$ | Additional Comments
 Throughout 3d,
 correct answers score full marks
 and
 ignore SF (including 1SF)
 and
 penalise incorrect units once only | | 2 |
| | $\left(\mathrm{M}_{\mathrm{r}} \mathrm{Na}_{2} \mathrm{CO}_{3}=\right)$
 $2 \times 23+12+3 \times 16 / 106\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ (1) | | |
| $(1.06 \div 106=) 0.01 / 1.0 \times 10^{-2}(\mathrm{~mol})$ | (1) | | |
| TE for incorrect M_{r} | | | |

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (d) (i i)}$	$(\mathrm{m}=2.50-1.06=1.44(\mathrm{~g})$ $\mathrm{n}=1.44 \div 18=)$ $0.08(\mathrm{~mol})$	Reject	Mark
Question Number	Acceptable Answers		1
$\mathbf{1 (d) (\text { iii) }}$	$(0.08 \div 0.01=) 8$ TE from (d)(i) and (d)(ii)		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (e)}$	Washings/Rinsing (from the beaker) should have been transferred to the volumetric flask	1	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (f)}$	Titration 1 is not concordant/a range finder/ an overshot/ an outlier/a trial /only a 'rough'/ more than $0.2 \mathrm{~cm}^{3}$ from the other 2 titres IGNORE Inaccurate	1	
OR (Titrations 2 and 3) are within 0.1/0.2 $\mathrm{cm}^{3} /$ concordant			
IGNORE More accurate			

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (g) (\mathbf { i })}$	Throughout 3g ignore SF except 1SF		1
	$\left(\right.$ Mean titre $\left.=16.5 \mathrm{~cm}^{3} / 0.0165 \mathrm{dm}^{3}\right)$		
	$\mathrm{n}=(0.10 \times 0.0165=) 1.65 \times 10^{-3} / 0.00165(\mathrm{~mol})$		
	Correct answer with no working scores (1)		
	No TE on incorrect mean		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (g) (i i)}$	$\mathrm{n}=\left(1.65 \times 10^{-3} \div 2=\right)$ $8.25 \times 10^{-4} / 0.000825(\mathrm{~mol})$ TE Ans to $(\mathrm{g}) \div 2$		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (g) (\text { iii })}$	$\mathrm{n}\left(8.25 \times 10^{-4} \times 10=\right)$		1
	$8.25 \times 10^{-3} / 0.00825(\mathrm{~mol})$		
	TE Ans to (g)(ii) $\times 10$		

Question Number	Acceptable Answers	Reject	Mark
1(g)(iv)	$\begin{align*} & \mathrm{M}_{\mathrm{r}}=\left(2.50 \div 8.25 \times 10^{-3}=\right) 303.03 \tag{1}\\ & (303.03-106=197.03 \text { then } \\ & 197.03 \div 18=) \\ & (x=) 10.946 / 10.95 / 10.9 / 11 \tag{1} \end{align*}$ Alternative Methods $\begin{align*} & M_{r}=106+18 \times \\ & \text { Mass }=\left(8.25 \times 10^{-3}\right) \times M_{r}=0.8745+0.1485 \times \tag{1}\\ & 2.50=0.8745+0.1485 \times \\ & X=(2.50-0.8745) \div 0.1485=10.946 \tag{1} \end{align*}$ OR Mass $\mathrm{Na}_{2} \mathrm{CO}_{3}=8.25 \times 10^{-3} \times 106=0.8745(\mathrm{~g})$ Mass $\mathrm{H}_{2} \mathrm{O}=2.5-0.8745=1.6255$ $\mathrm{Mol} \mathrm{H} \mathrm{H}_{2}=1,6255 \div 18=0.0903$ $\begin{equation*} X=0.0903 \div 8.25 \times 10^{-3}=10.946 \tag{1} \end{equation*}$ TE from previous answers Correct final answer with/without working scores (2)		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (h)}$	Marking point 1 The number of moles of sodium carbonate would be too large OR the molar mass of hydrated salt would be too small (1)	2	
Marking point 2 Hence the value of x would be too small/low (1) MP2 is not standalone and may be awarded only if one or other of the statements for the first mark is given No TE on incorrect MP1			

(TOTAL FOR QUESTI ON 1 = 16 MARKS)

Question Number	Acceptable Answers	Reject	Mark
2(a)	(Bubble into) lime water / calcium hydroxide (solution) / Ca(OH) $2((\mathrm{aq}))$ and Goes cloudy / white precipitate forms / turns milky / turns chalky IGNORE extinguishes a lighted splint	Goes muddy Turns misty	1

Question Number	Acceptable Answers	Reject	Mark
2(b)	Flask stoppered with connection to apparatus in which gas can be collected. ALLOW Either bung in neck or side arm sealed IGNORE Small gaps between bung and mouth of flask Heater under flask	Large gaps in flask connection to flask / unstoppered flask Delivery tube through wall of trough	2
Syringe OR inverted burette/ inverted measuring cylinder in trough of water ALLOW Tubes without graduation marks shown if labelled as burette, syringe or measuring cylinder	Burette or measuring cylinder without water	(Test) tube without graduation marks	

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{2 (c)}$	$($ Mol gas $=41 / 24000=)$ $1.7083 \times 10^{-3} / 0.0017083(\mathrm{~mol})$ Ignore sf except 1 sf Ignore lack of units	Incorrect units		$\quad 1$	
:---					

Question Number	Acceptable Answers	Reject	Mark
2(d)	Correct answer of 87.8 without working scores 2 Mol $\mathrm{XCO}_{3}=1.7083 \times 10^{-3}$ Mass of $1 \mathrm{~mol}=\left(0.15 / 1.7083 \times 10^{-3}\right)$ $=87.8$	(1)	2
	(Use of 1.7 gives mass 88.2 use of 1.71 gives 87.7$)$ Ignore sf except 1 sf TE from 2c Ignore lack of units	Incorrect units but do not penalise if already penalised in (c).	

Question Number	Acceptable Answers	Reject	Mark
2(e)	$\begin{aligned} & \text { Relative atomic mass } X=(87.8- \\ & (12+48))=27.8 \\ & X=\mathrm{Mg} \\ & \text { ALLOW } \\ & \mathrm{Mg}^{2+} \end{aligned}$ No mark for identification of Mg without relative atomic mass or some working. ALLOW Calculation of atomic mass shown in (d) TE from 2d	Element with no justification. Identification as Sr because 2(d) gives 88	1

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\ \hline \mathbf{2 (f)} & \begin{array}{l}\text { (Some) carbon dioxide dissolved in the } \\ \text { dilute hydrochloric acid / water }\end{array} & \begin{array}{l}\text { ALLOW } \\ \mathrm{CO}_{2} \text { reacts with water } \\ \text { Ignore references to standard conditions } \\ \text { and faulty apparatus }\end{array} & \begin{array}{l}\text { Impure carbonate } \\ \text { Impure acid } \\ \text { Iydrochloric acid. } \\ \text { Incomplete reaction } \\ \text { Side reactions }\end{array}\end{array}\right\}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (g)}$	No colour/ no change (to flame)	White/ bright light Answers about Mg metal No flame More than one colour given	1
ALLOW Colourless flame TE from incorrect Group 2 metal in 2(e): Ca (brick) red/ yellow-red Sr crimson/ (dark) red Ba green			

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{2 (h)}$	Some sulfates are insoluble/ BaSO4 is insoluble/ Sulfates become less soluble going down group ALLOW A precipitate of the sulfate would form IGNORE All group II sulfates are insoluble (1)	Carbonates become less soluble going down group Element is insoluble in sulfuric acid. Grecipitate" dioxide form e.g SO_{2}.	2		
Just "it would form a				\quad	Reaction with acid will be
:---					
incomplete					
Mark independently.					

Total for Question 2 = 11 marks

Question Number	Acceptable Answers	Reject	Mark
3(a)	Two different hazards must be given to score 2 marks. Phosphoric acid corrosive ALLOW burns skin/ damages skin	Additional hazards e.g. irritant harms skin carcinogenic	Additional hazards e.g. explosive carcinogenic
Cyclohexanol / cyclohexene (in)flammable ALLOW Irritant IGNORE Comments on glass wool, calcium chloride Cyclohexene / cyclohexanol is volatile	(1)		

Question Number	Acceptable Answers	Reject	Mark
3(b)	Correct final answer scores (2)		
Mass of $12 \mathrm{~cm}^{3} \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{OH}=$			
12×0.962 $=11.544 / 11.54 / 11.5(\mathrm{~g})$ Number of moles $=$ $(11.544 / 100=0.11544)$ $=0.115 / 0.12(\mathrm{~mol})$ ALLOW (1) TE from incorrect mass Ignore sf except 1 sf 2	(1)		

Question Number	Acceptable Answers	Reject	Mark
3(c)	Flask with heat source AND stillhead AND a closed system to the left hand side of the outlet to the condenser. Heat source can be electrical heater, water bath ALLOW bunsen or just arrow ALLOW appropriate tubing or flask with long neck as alternative to stillhead Bulb of thermometer opposite opening to condenser Water condenser sloping downwards AND direction of water Connected to receiver with a vent OR delivery tube to an open narrow necked flask Ignore fractionating column if included. Drawing showing reflux distillation scores max 1 for water direction in condenser.	Conical flask Sealed receiver, beaker	4

Question Number	Acceptable Answers	Reject	Mark		
3(d)	D rating agent removes water in a (chemical) reaction OR causes two H and one O atoms to be lost (in a reaction) OR removes the elements of water (from reactant molecules) OR removes water from molecules of a compound	Reference to removal of solvents other than water	2		
	ALLOW answers indicating a reaction occurs eg H protonates OH in alcohol forming water removes water causing bonds to break reference to elimination reactions (1)				
	Drying agent removes water mixed with other materials				
OR					
removes water from a mixture					
OR					
removes water in a physical change				\quad	ALLOW
:---					
Absorbs water					

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (e)}$	Glass wool less absorbent OR No cyclohexene left on wool OR filtration is faster through glass wool OR filter paper absorbs liquids/ product/ mixture		1
	IGNORE yield is higher with glass wool/ lower with filter paper more efficient filtration		

Question Number	Acceptable Answers	Reject	Mark
3(f)	Look at final answer. If correct award 3 marks. There are several correct methods. All involve calculating a number of moles of cyclohexene, a mass of cyclohexanol and the use of the 75\% but these stages can be done in different orders. EITHER Need theoretical yield of (10.0 x 100/75) $=$ $\begin{equation*} 13.3333 / 13.33 / 13.3 \mathrm{~g} \tag{1} \end{equation*}$ $\begin{equation*} 13.3333 \mathrm{~g}=(13.3333 / 82)=0.1626 / \tag{1} \end{equation*}$ 0.163 mol cyclohexene 0.1626 mol cyclohexanol $=\mathbf{1 6 . 2 6} /$ 16.3 / 16 g OR Mol of cyclohexene $=(10 / 82)=$ 0.12195 Mol of cyclohexanol $=(0.12195 \mathrm{x}$ $\begin{equation*} 100 / 75)=0.1626 \tag{1} \end{equation*}$ Mass of cyclohexanol $=(0.1626 x$ $\begin{equation*} 100)=16.26 / 16.3 / 16 \mathrm{~g} \tag{1} \end{equation*}$ OR Mol of cyclohexene $=(10 / 82)=$ 0.12195 Theoretical mass of cyclohexanol $=$ $(0.12195 \times 100)=12.195 / 12.2 \mathrm{~g}$ Mass of cyclohexanol $=(12.2 \mathrm{x}$ $\begin{equation*} 100 / 75)=16.26 / 16.3 / 16 \mathbf{g} \tag{1} \end{equation*}$ ALLOW $16.2(\mathrm{~g})$ in all methods from rounding 9.146 (g) from incorrect use of 75% scores (2) Ignore SF in final answer except 1 SF	Theoretical yield $\begin{aligned} & =(10.0 x \\ & 75 / 100)=7.5 \mathrm{~g} \end{aligned}$ $\begin{aligned} & (0.12195 \times \\ & 75 / 100)= \\ & 0.09146 \end{aligned}$	3

Question Number	Acceptable Answers	Reject	Mark
3(g)(i)	Brown / red-brown / orange / yellow/ yellow-brown to colourless ALLOW Brown / red-brown / orange / yellow is decolorised. IGNORE Clear for colourless	Red to colourless	1
Question Number	Acceptable Answers	Reject	Mark
3(g)(ii)	 ALLOW Rings with CH_{2} and/or CHBr IGNORE Angles in ring Placing of H and Br inside or outside ring	Benzene ring Just skeletal formula/ molecular formula Bromoalcohols Non-adjacent Br atoms	1

Total for Question 3 = 16 marks

Question Number	Acceptable Answers	Reject	Mark
4(a)	Bromine / Br_{2} Redox/ oxidation OR sulfur dioxide / SO_{2} Redox/ reduction ALLOW Redox but no product given scores 1 mark Butanal/ butanoic acid and redox / oxidation scores 1 mark	HBr and redox scores 0. Oxidation/ reduction if no product given	2

Question Number	Acceptable Answers	Reject	Mark
4(b)(i)	To ensure condenser is full of water / to prevent an airlock forming/ to stop air bubbles forming / to stop hot spots forming	To prevent back flow of water Just "So that nothing escapes"	1
	ALLOW To ensure that all of the condenser surface is covered with cold water/ So that (hot) vapour is next to the coolest water first / So the lower region (of the condenser) is colder / Makes cooling more efficient	Makes cooling that condensation occurs faster	

Question Number	Acceptable Answers	Reject	Mark
4(b)(ii)	There would be escape of flammable liquid / corrosive spray / corrosive acid (spray) /poisonous gas/ toxic gas/ harmful gas	Named substance e.g. $\mathrm{Br}_{2} /$ sulfuric acid without reference to hazard Eg bromine could escape	1
IGNORE Prevents boiling over Very exothermic	Escape of $\mathrm{HBr} / \mathrm{SO}_{2}$ which are toxic named toxic gas is only allowed if it (because they do wot condense)	nondense.	Risk of explosion Just "escape of product"

Question Number	Acceptable Answers	Reject	Mark
4(c)(i)	(teat) pipette/ syringe (to remove upper aqueous layer) ALLOW decant / description of decanting	To remove lower aqueous layer Add drying agent Add dehydrating agent Just "Use separating funnel" Use a siphon	1

Question Number	Acceptable Answers	Reject	Mark	
4(c)(ii)	Separating funnel / tap funnel (1) Run off lower layer ALLOW pipette off upper layer	(1)	Run off lower aqueous layer BUT do not penalise if mark in (c)(i) lost for wrong layers.	Answers showing candidate is unaware that lower layer is the product

Question Number	Acceptable Answers	Reject	Mark
4(d)	To remove / neutralize (excess) acid OR to neutralize unreacted acid OR to remove / neutralize HCl	To eliminate HCl Just "to react with acid" To remove/ ALLOW To neutralise the solution To remove all the HCl To wash out unreacted acid (and HCl$)$ To remove HBr	1
IGNORE To remove impurities	(

Question Number	Acceptable Answers	Reject	Mark
4(e)	S 8 Dry/ remove water from the bromobutane With (anhydrous) calcium chloride / (anhydrous) magnesium sulfate / sodium sulfate/ silica gel ALLOW CaCl $2 / \mathrm{MgSO}_{4} / \mathrm{Na}_{2} \mathrm{SO}_{4}$ If name and formula are given both must be correct Step 9 (Filter / decant and then) redistil / distil If only one step is given accept the answer in Step 8 or Step 9 ALLOW Description of drying carried out after redistillation max (2)	Dry in an oven/ evaporate to half volume scores 0 for this step. Copper sulfate Concentrated sulphuric acid Calcium hydroxide Metal carbonates Calcium sulfate recondense	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 (f) (i)}$	$(7.5 \times 0.81)=6.075 / 6.08(\mathrm{~g})$ Ignore sf except 1 sf	6.07 Wrong units	1

Question Number	Acceptable Answers	Reject	Mark
4(f)(ii)	Look at final answer. 67\% scores 3 marks; answers with 3sf rounding to 67 score 2 marks. If this is incorrect follow this scheme: METHOD 1 $\begin{align*} \text { Mol butan-1-ol } & =(6.075 / 74) \\ & =0.0820945 \tag{1} \end{align*}$ maximum mass 1-bromobutane $=$ $(0.0820945 \times 137)=11.246959 \mathrm{~g}$ $\begin{align*} & \begin{aligned} \% \text { yield } & =((7.5 / 11.24659) \times 100 \\ & =66.85) \end{aligned} \\ & =67 \% \text { to } 2 \mathrm{sf} \end{align*}$ OR METHOD 2 $7.5 / 137=0.0547445 \mathrm{~mol}$ (bromobutane) 6.075/74 $=0.0820945 \mathrm{~mol}$ butan-1-ol \% yield = ($(0.05474455) \times 100 / 0.0820945)$ $\begin{equation*} =66.85) \tag{1} \end{equation*}$ $=67 \%$ to 2 sf Also TE from one step of the calculation to the next and TE on $4 f(i)$ unless yield > 100\%. Use of 6.08 gives 0.082161 mol , 11.256216 g bromobutane, final answer 67\% 11.3 g bromobutane gives 66%.	Percentages calculated from volumes with no conversion to mol or mass. $\begin{aligned} & 6.075 / 7.5 \times 100 \\ & =81 \% \text { scores } 0 \end{aligned}$ 67.0 (This is 3sf)	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{5 (a)}$	Orange to green / blue / brown		$\mathbf{1}$
	ALLOW Orange to blue-green Orange to dark green		

Question Number	Acceptable Answers	Reject	Mark
5(b)	To prevent solvent boiling / vaporising / escaping (from mouth of flask)	ALLOW Solvent may ignite / is flammable Reactant / product / butan-2-ol / butanone are prevented from boiling / vaporising / escaping (from mouth of flask)	IGNORE Comments on sulfuric acid spray being corrosive Butan-2-ol / solvent / butanone is volatile or has a low boiling temperature

Question Number	Acceptable Answers	Reject	Mark
5(c) (Purpose:) removes / neutralizes (1)	Removes impurities (excess) acid (Method:) Put in a (stoppered) separating funnel / tap funnel with sodium hydrogencarbonate (and shake the mixture)	3	
	Open the tap at intervals / remove stopper at intervals / release pressure at intervals ALLOW Pressure builds up because carbon dioxide forms Final mark can be awarded if washing is carried out in a stoppered flask		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{5 (d)}$	Drying agent / removes water / removes moisture	Dehydrating agent Reacts with water Removes impurities	$\mathbf{1}$
	ALLOW Absorbs water	(dmen	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{5 (f) (\mathbf { i })}$	$(5.0 / 0.805)=6.2112 / 6.211 / 6.21 /$ ALLOW $\left(\mathrm{cm}^{3}\right)$	$6\left(\mathrm{~cm}^{3}\right)$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
5(f) (ii)	There are many possible correct methods for this calculation. Two of these methods are shown below: Look at final answer: 4.8(2) (g) scores 3 marks, 1.97 (g) OR 3.08 (g) scores 2 marks For other answers, look at working; do not penalise intermediate rounding. 0.042 moles butanone gives final answer of 4.9 (g) First mark: 3.0 g butanone $=0.041609 \mathrm{~mol}$ THEN Route 1: Second mark Need to make $\frac{(0.0416 \times 100)}{64}$ $\begin{equation*} =0.065 \mathrm{~mol} \tag{1} \end{equation*}$ Third mark Mass butanol $=(0.065 \times 74.1)$ $\begin{equation*} =4.8175 / 4.8(2)(\mathrm{g}) \tag{1} \end{equation*}$ OR Route 2: Second mark Mass of 0.041609 mol butanol $=0.041609 \mathrm{x}$ $\begin{equation*} 74.1=3.082(\mathrm{~g}) \tag{1} \end{equation*}$ (Use of 0.042 mol gives 3.11 (g)) Third mark Mass butanol needed $=$ $(3.082 \times 100 / 64)=4.8175 / 4.8(2)(\mathrm{g})(\mathbf{1})$ IGNORE sf except 1 sf at all stages Rounding may be done at different stages of calculation and intermediate values may not be shown		3

