Energetics

Mark Scheme

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	Chemistry Lab Skills 1
Sub Topic	Energetics
Booklet	Mark Scheme

Time Allowed:	54 minutes
Score:	$/ 45$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (i)}$	A ditional Comment For parts (i), (ii), correct answers score full marks and ignore SF (except 1SF) and penalise incorrect units once only and penalise incorrect rounding once only (energy $=50.0 \times 4.18 \times 4.7=) 982.3(J) / 982$ ALLOW 0.9823 kJ IGNORE any sign	1	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (i i)}$	$(\mathrm{n}=2.54 \div 123.5=) 0.0206 / 0.0205668(\mathrm{~mol})$		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (\text { iii) }}$	$\Delta \mathrm{H}=$ $(0.9823 \div 0.0205668=) 47.76144\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ (1) $-47.8(\mathrm{~kJ} \mathrm{~mol}$ (1)		2
	Sign and 3 SF required for second mark TE on ans (a)(i) \div ans (a)(ii)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (\text { (iv) }}$	To ensure that enthalpy change is per mol of copper(II) carbonate OR So that the limiting factor is the mass of copper(II) carbonate	1 ALLOW To ensure all copper(II) carbonate reacts IGNORE To ensure the reaction goes to completion OR So sulfuric acid is not a limiting factor	

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{1 (a) (v)}$	Heat loss OR Heat capacity of apparatus is not negligible	Incomplete reaction	1		
	ALLOW Copper(II) carbonate contains copper(II) hydroxide OR Specific heat capacity of solution is not 4.18 IGNORE Non-standard conditions/ Just impurities	Side reactions		\quad	
:---					

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (b)}$	$\Delta \mathrm{H}_{3}=\Delta \mathrm{H}_{4}-\Delta \mathrm{H}_{5}$	(1)	
	$\Delta \mathrm{H}_{3}=-47.8--56.1=+8.3\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$		
	OR		
$\Delta \mathrm{H}_{3}=-47.7--56.1=+8.4\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	(1)		
Answer alone scores (2)			
	IGNORE SF		
	TE on 4(a)(iii)		
No TE on incorrect Hess' Law			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (c)}$	Difficult to measure heat absorbed when heating any substance OR Difficult to measure the temperature (change) of a solid OR Difficult to measure the temperature change when heating	Just 'it's endothermic'	1

Question	Acceptable Answers	Reject	Mark
2(a)(i)	Correct final answer with + sign, 3 sf and units scores 3 $\begin{aligned} & (25 \times 4.18 \times 10.5)=1097.25(\mathrm{~J}) / \\ & 1.097 \mathrm{~kJ} \end{aligned}$ Ignore sign if given $\begin{equation*} \mathrm{Mol} \mathrm{NH} 44 \mathrm{Cl}=(5.00 / 53.5)=0.09346 \tag{1} \end{equation*}$ 0.0935 $\begin{aligned} & \Delta \mathrm{H}_{\text {solution }}=(+1.097 / 0.09346) \\ & (=+11.7376 /+11.7406) \\ & =+11.7 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & \mathrm{OR} \\ & +11700 \mathrm{~J} \mathrm{~mol}^{-1} \end{aligned}$ Sign, unit and sf must be correct for third mark Use of 2sf earlier may lead to an inaccurate answer ALLOW Final answer $=+11.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ from rounding of MP1 and/or MP2 TE from each step to the next If mass used is 30 g Energy transferred $=1316.7 \mathrm{~J}$ $\Delta \mathrm{H}_{\text {solution }}=+14.1 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \max (2)$ If mass used is 5 g Energy transferred $=219.45 \mathrm{~J}$ $\Delta \mathrm{H}_{\text {solution }}=+2.35 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \max (2)$	Answers not to 3 sf No sign or negative sign	3

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
2(a)(ii)	First mark is for calculation of error. Second mark is for comparison of temperature error to mass error.		2
	Uncertainty in mass $=$ $(0.005 \times 100 \times 2 / 5.00)=(\pm) 0.2 \% \quad(1)$ Uncertainty / error in mass measurement (much) smaller than uncertainty in temperature reading (1)Just "0.2\% is negligible / very small"		
	Second mark depends on first being correct, but allow second mark if mass error is 0.1\% (as 0.005 not doubled)		

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
2(b)(i)	Points (close to the) horizontal from starting temperature at 0,1 and 2 (and 3) minutes Points (on a line) rising from a minimum up to 10 minutes (at least 2 points needed at the warming up stage for extrapolation.) The minimum can be at $4,5,6,7$ or 8 minutes. (1)	Large change of temperature at 3 minutes Cooling curve instead of warming curve	2

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
2(b)(ii)	Line through temperature points where warming occurs extrapolated back to 3 minutes. ALLOW Line at minimum temperature shown as staying horizontal and extrapolated back Max temperature change indicated as vertical difference between starting temperature and extrapolated line at 3 minute TE if cooling curve drawn in 3(b)(i) for both marks.		2

Question Number	Acceptable Answers	Reject	Mark
2(b)(iii)	To check water temperature is steady / constant OR To deduce temperature at 3 mins / at start by extrapolation of line	Water temperature may change	Minerals in water may affect result
ALLOW to allow water temperature to equilibrate with surroundings/ to reach temperature of surroundings/ to acclimatise	IGNORE to get initial temperature accurate		

Question Number	Acceptable Answers	Reject	Mark
2(c)(i)	Heat must be supplied (and cannot be measured)	Just " because it is endothermic"	1
ALLOW impossible to tell when/if reaction is complete reaction goes to equilibrium/ is reversible	Needs high temperature	IGNORE reference to gases escaping / products are gases / hazards	

Question Number	Acceptable Answers	Reject	Mark
2(c)(ii)	$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$ $\rightarrow \mathrm{H}_{\text {reaction }}$ $\mathrm{NH}_{3}(\mathrm{~g})+$ $\mathrm{HCl}(\mathrm{g})$ $\Delta \mathrm{H}_{1} \downarrow$ $\Delta \mathrm{H}_{2}+\Delta \mathrm{H}_{3} \downarrow$ $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$ $\Delta \mathrm{H}_{4}$ \leftarrow $\mathrm{NH}_{3}(\mathrm{aq})$ $+\mathrm{HCl}(\mathrm{aq})$ OR 2 separate parallel arrows for $\Delta \mathrm{H}_{2}$ $+\Delta \mathrm{H}_{3}$ OR $\Delta \mathrm{H}_{2} \Delta \mathrm{H}_{3}$ next to one arrow without being separated by + ALLOW Arrows reversed if signs of enthalpy changes are reversed. IGNORE Any water molecules added/ aq signs / other reactant species Arrow size		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (c) (\text { iii) }}$	$\Delta \mathrm{H}_{\text {reaction }}=\Delta \mathrm{H}_{1}-\Delta \mathrm{H}_{2}-\Delta \mathrm{H}_{3}-\Delta \mathrm{H}_{4}$		1
	ALLOW any order of terms with correct signs Any correct use of brackets No TE on incorrect cycle		

Total for Question 2 =13 marks

