Energetics

Mark Scheme

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Торіс	Chemistry Lab Skills 1
Sub Topic	Energetics
Booklet	Mark Scheme

Time Allowed:	54 minutes
Score:	/45
Percentage:	/100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question Number	Acceptable Answers	Reject	Mark
1(a)(i)	A ditional Comment For parts (i), (ii), correct answers score full marks and ignore SF (except 1SF) and penalise incorrect units once only and penalise incorrect rounding once only (energy = 50.0 x 4.18 x 4.7 =) 982.3 (J) /982 ALLOW 0.9823 kJ IGNORE any sign		1

Question	Acceptable Answers	Reject	Mark
Number			
1 (a)(ii)	(n = 2.54 ÷ 123.5 =) 0.0206/0.0205668 (mol)		1

Question Number	Acceptable Answers		Reject	Mark
1(a)(iii)	$\Delta H = (0.9823 \div 0.0205668 =) 47.76144 \text{ (kJ mol}^{-1}) -47.8 \text{ (kJ mol}^{-1})$ Sign and 3 SF required for second mark TE on ans (a)(i) ÷ ans (a)(ii)	(1) (1)		2

Question Number	Acceptable Answers	Reject	Mark
1(a)(iv)	To ensure that enthalpy change is per mol of copper(II) carbonate OR So that the limiting factor is the mass of copper(II) carbonate ALLOW To ensure all copper(II) carbonate reacts		1
	IGNORE To ensure the reaction goes to completion OR So sulfuric acid is not a limiting factor		

Question Number	Acceptable Answers	Reject	Mark
1(a)(v)	Heat loss OR Heat capacity of apparatus is not negligible	Incomplete reaction By-products	1
	ALLOW Copper(II) carbonate contains copper(II) hydroxide OR Specific heat capacity of solution is not 4.18 IGNORE Non-standard conditions/ Just impurities	Side reactions	

Question Number	Acceptable Answers	Reject	Mark
1(b)	$\Delta H_3 = \Delta H_4 - \Delta H_5 $ $\Delta H_3 = -47.8 - 56.1 = + 8.3 \text{ (kJ mol}^{-1}\text{)}$ (1)		2
	OR $\Delta H_3 = -47.756.1 = + 8.4 \text{ (kJ mol}^{-1})$ (1) Answer alone scores (2)		
	IGNORE SF		
	TE on 4(a)(iii)		
	No TE on incorrect Hess' Law		

Question Number	Acceptable Answers	Reject	Mark
1(c)	Difficult to measure heat absorbed when heating any substance OR Difficult to measure the temperature (change) of a solid OR Difficult to measure the temperature change when heating	Just 'it's endothermic'	1

(TOTAL FOR QUESTION 1 = 9 MARKS)

Question	Acceptable Answers	Reject	Mark
2(a)(i)	Correct final answer with + sign, 3 sf and units scores 3		3
	(25 x 4.18 x 10.5) = 1097.25 (J) / 1.097 kJ Ignore sign if given		
	(1) Mol NH ₄ Cl = $(5.00/53.5) = 0.09346/$ 0.0935 (1)		
	$\Delta H_{\rm solution} = (+1.097/0.09346)$		
	(= +11.7376 / +11.7406)		
	= +11.7 kJ mol ⁻¹ OR +11700 J mol ⁻¹ Sign, unit and sf must be correct for third mark Use of 2sf earlier may lead to an inaccurate answer (1)	Answers not to 3 sf No sign or negative sign	
	ALLOW Final answer = +11.8 kJ mol ⁻¹ from rounding of MP1 and/or MP2 (3)		
	TE from each step to the next		
	If mass used is 30 g Energy transferred = 1316.7 J $\Delta H_{\text{solution}} = +14.1 \text{ kJ mol}^{-1} \text{ max (2)}$		
	If mass used is 5 g Energy transferred = 219.45 J $\Delta H_{\text{solution}} = +2.35 \text{ kJ mol}^{-1} \text{max (2)}$		

Question Number	Acceptable Answers	Reject	Mark
2(a)(ii)	First mark is for calculation of error. Second mark is for comparison of temperature error to mass error.		2
	Uncertainty in mass = $(0.005 \times 100 \times 2/5.00) = (\pm)0.2\%$ (1)		
	Uncertainty / error in mass measurement (much) smaller than uncertainty in temperature reading (1)	Just "0.2% is negligible / very small"	
	Second mark depends on first being correct, but allow second mark if mass error is 0.1% (as 0.005 not doubled)		

Question Number	Acceptable Answers	Reject	Mark
2 (b)(iii)	To check water temperature is steady / constant OR To deduce temperature at 3 mins / at start by extrapolation of line ALLOW to allow water temperature to equilibrate with surroundings/ to reach temperature of surroundings/ to acclimatise IGNORE to get initial temperature accurate	Water temperature may change Minerals in water may affect result	1

Question Number	Acceptable Answers	Reject	Mark
2(c)(i)	Heat must be supplied (and cannot be measured)	Just " because it is endothermic"	1
	ALLOW	Needs high	
	impossible to tell when/if reaction is complete reaction goes to equilibrium/ is reversible	temperature	
	IGNORE reference to gases escaping / products are gases / hazards		

Question Number	Acceptable Answers	Reject	Mark
2 (c)(ii)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1
	$\begin{array}{c} NH_4Cl(aq) \\ \leftarrow \\ HCl(aq) \\ \end{array}$		
	OR 2 separate parallel arrows for ΔH_2 + ΔH_3 OR $\Delta H_2 \Delta H_3$ next to one arrow without being separated by +		
	ALLOW Arrows reversed if signs of enthalpy changes are reversed.		
	IGNORE Any water molecules added/ aq signs / other reactant species Arrow size		

Question Number	Acceptable Answers	Reject	Mark
2 (c)(iii)	$\Delta H_{\text{reaction}} = \Delta H_1 - \Delta H_2 - \Delta H_3 - \Delta H_4$ ALLOW any order of terms with correct signs Any correct use of brackets		1

Total for Question 2 = 13 marks