Acid/Base Equilibria Mark Scheme

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Торіс	Rates, Equilibria & Further Organic Chemistry
Sub Topic	Acid/Base Equilibria
Booklet	Mark Scheme

Time Allowed:	40 minutes
Score:	/33
Percentage:	/100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question	Correct Answer	Reject	Mark
Number			
1 a	A		1

Question	Correct Answer	Reject	Mark
Number			
1 b	В		1

Question Number	Correct Answer	Reject	Mark
2	D		(1)

Question Number	Correct Answer	Reject	Mark
3	D		1

Question Number	Acceptable Answers	Reject	Mark
4 a	Proton/ H ⁺ donor		1

Question Number	Acceptable Answers	Reject	Mark
4b	pH of HCI = 1 and pH of weak acid is greater /higher than 1 Allow any number >1 and <7	Different (from 1)	1

Question Number	Acceptable Answers	Reject	Mark
4c(i)	HCOOH/ methanoic acid is stronger because its K_a is bigger/higher OR its p K_a is smaller / lower (The data: K_a p K_a Methanoic acid 1.6 x 10 ⁻⁴ 3.8 Propanoic acid 1.3 x 10 ⁻⁵ 4.9) IGNORE Discussion of inductive effect		1

Question Number	Acceptable Answers	Reject	Mark
4c(ii)	(HCOOH + C ₂ H ₅ COOH) \rightleftharpoons HCOO[−] + C₂H₅COOH₂⁺	COOH ⁻ C ₂ H ₆ COOH ⁺	1
	ALLOW TE for equation with propanoic acid as proton donor giving $HCOOH_2^+$ and $C_2H_5COO^-$ if HCOOH is stated to be weaker		

Question Number	Acceptable Answers		Reject	Mark
4d	$[H^{+}] = (1 \times 10^{-14} / [OH^{-}])$ = 2 x 10 ⁻¹³ (mol dm ⁻³)	(1)		2
	pH = 12.7	(1)	13	
	OR			
	pOH / -log 0.05 = 1.3	(1)		
	pH = (14 -1.3 =) 12.7	(1)	13	
	Correct answer with no working score provided at least 3 SF Allow TE on first mark provided answ	es 2 er >7		

Question Number	Acceptable Answers	Reject	Mark
4 e(i)	$C_2H_5COOH + NaOH \rightarrow C_2H_5COO^{(-)} Na^{(+)} + H_2O$		1
	ALLOW \Rightarrow for \rightarrow C ₂ H ₅ COO ⁻ + Na ⁺ for C ₂ H ₅ COO ⁽⁻⁾ Na ⁽⁺⁾		
	IGNORE State symbols even if incorrect		

Question	Acceptable Answers	Reject	Mark
4e(ii)	Allow salt/ $C_2H_5COONa/$ propanoate ion/ $C_2H_5COO^-/$ base for A ⁻		5
	Allow propanoic acid/ C_2H_5COOH for HA		
	First mark		
	$K_a = \frac{[H^+][A^-]}{[HA]}$		
	OR log $K_a = \log[H^+] + \log [A^-]/[HA]$		
	OR pH = p K_a — log [HA]/[A ⁻]		
	ALLOW any of these equations re-arranged or used correctly (1)		
	Next four marks		
	Mol NaOH before mixing = $(20 \times 0.05/1000) = 0.001$ and mol propanoic acid before mixing = $(20 \times 0.25/1000) = 0.005$ (1)		
	Mol propanoate in mixture = 0.001 OR [propanoate] = $(0.001/40 \times 1000)$ = 0.025 (mol dm ⁻³) (1)		
	Mol propanoic acid in mixture = 0.004 OR [propanoic acid] = $(0.004/40 \times 1000)$ = 0.1 (mol dm ⁻³) (1)		
	$[H^+] = (1.3 \times 10^{-5})(0.1)$		
	0.025		
	pH = 4.28/ 4.3 (1)		
	Correct pH with no working scores last 4 marks		
	ALLOW		
	Other methods leading to 4.28 e.g. based on equal volumes being mixed so mol propanoate are in double the volume and so concentration is 0.025 mol dm^{-3}		

Question Number	Acceptable Answers	Reject	Mark
4e(iii)	First markThe mixture contains a large amount/reservoir of a (weak) acid/propanoicacid and its conjugate base/propanoate ions /salt(1)		3
	Second mark Only awarded if at least one equation given		
	Added OH^- combines with H^+ ($H^+ + OH^- \rightarrow H_2O$) from propanoic acid followed by dissociation of more propanoic acid		
	$C_2H_5COOH \rightleftharpoons C_2H_5COO^- + H^+$		
	OR Added OH ⁻ combines with propanoic acid OH ⁻ + C ₂ H ₅ COOH \rightarrow C ₂ H ₅ COO ⁻ + H ₂ O (1)		
	Third mark(pH is unchanged because added OH is removed) change in concentrationof $C_2H_5COO^-$ and C_2H_5COOH issmall / ratio [salt]/[acid] hardlychanges(1)		

(Total for Question 4 = 15 marks)

З
5

Question Number	Acceptable Answers	Mark
5(a) (ii)	Note – the equations $NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$ $NH_4^+ + H_2O \rightarrow NH_4OH + H^+$ score all three marks	3
	Note –the equation $NH_4^+ \rightarrow NH_3 + H^+$ scores 2 marks, but if (aq) state symbols are given, scores 3 marks	
	1st mark: Ammonium ions /NH ₄ ⁺ present (at equivalence point) OR	
	ammonium chloride/ammonium salt (1)	
	2 nd mark Ammonium (ions) / NH₄ ⁺ react with water /hydrolysed by water /dissociate in water Ignore ammonium chloride reacts with water (1)	
	3rd mark $NH_4^+ \rightarrow NH_3 + H^+$ OR $NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$ Allow	
	$NH_4^+ + H_2O \rightarrow NH_4OH + H^+ $ (1)	
	Note if no other mark awarded Just 'strong acid – weak base (titration)' / ammonium chloride is the salt of a strong acid and a weak base scores (1) only	

Question Number	Acceptable Answers	Mark
5(a) (iii)	5(a)If final answer is 1.6(2), with correct working or(iii)without working, award 4 marks	
	Mol of ammonia used = $(25/1000 \times 0.024)$ = 6×10^{-4} mol	
	and Mol of acid added = $(40/1000 \times 0.054)$ = 2.16×10^{-3} (1)	
	Mol of excess acid = $2.16 \times 10^{-3} - 6 \times 10^{-4}$ = 1.56×10^{-3} mol (1)	
	$[H^+] = 1.56 \times 10^{-3} / (65 / 1000) = 0.024 \text{ mol } dm^{-3}$ (1)	
	$pH = -log [H^+] = 1.6(2)$ (1)	
	Ignore SF except 1 SF Allow TE for 2 nd , 3 rd marks Allow TE for 4 th mark provided pH is less than 7 and it is based on some use of data in question	
	Alternative method for 1^{st} and 2^{nd} marks Mol of ammonia used = $(25/1000 \times 0.024)$ = 6×10^{-4} mol	
	and Volume of acid used = $\frac{6 \times 10^{-4} \times 1000}{0.054}$ = 11.111 cm ³ (1) Volume of acid left = 40 - 11.111 = 28.889 cm ³ Mol of excess acid = $\frac{28.889 \times 0.054}{10.054}$	
	$= 1.56 \times 10^{-3} \text{ mol} $ (1)	

Question Number	Acceptable Answers	Reject	Mark
5(b)(i)	EITHER $[H^+]^2 = 5.5 \times 10^{-13} \text{ or } [H^+] = \sqrt{5.5 \times 10^{-13}} / 7.416 \times 10^{-7}$ (1) (mol dm ⁻³) pH = $-\log\sqrt{5.5 \times 10^{-13}}$ (= 6.12982 / 6.13) (1) OR pK _w = 12.26 (1) pH = $\frac{1}{2}$ pK _w (= 6.130) (1)	6.13 with no working	2

Question Number	Acceptable Answers		Reject	Mark
5(b) (ii)	Neutral ([H ⁺] = [OH ⁻] /equal amounts of H ⁺ a OH ⁻ ions OR Both [H ⁺]and [OH ⁻] have increased by the same amount (1) and / 1)	Acidic or alkaline for both marks	2

Total for Question 5 = 14 marks