Acid/Base Equilibria

Mark Scheme

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	Rates, Equilibria \& Further Organic Chemistry
Sub Topic	Acid/Base Equilibria
Booklet	Mark Scheme

Time Allowed:	40 minutes
Score:	$/ 33$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$

www.igexams.com

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 a}$	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 b}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{2}$	D		(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{3}$	D		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 a}$	Proton $/ \mathrm{H}^{+}$donor		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 b}$	pH of $\mathrm{HCl}=1$ and pH of weak acid is greater /higher than 1 Allow any number >1 and <7	Different (from 1)	1

Question Number	Acceptable Answers	Reject	Mark
4c(i)	$\mathrm{HCOOH} /$ methanoic acid is stronger because its K_{a} is bigger/higher OR its pK_{a} is smaller / lower (The data: IGNORE Discussion of inductive effect		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 c (i i)}$	$\left(\mathrm{HCOOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right) \rightleftharpoons \mathbf{H C O O}^{-}+\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{5}} \mathbf{C O O H}_{\mathbf{2}}{ }^{+}$	COOH^{-} $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{COOH}^{+}$	1
	ALLOW TE for equation with propanoic acid as proton donor giving HCOOH_{2}^{+}and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}$if HCOOH is stated to be weaker		

www.igexams.com

\begin{tabular}{|c|c|c|c|}
\hline Question Number \& Acceptable Answers \& Reject \& Mark \\
\hline 4d \& \begin{tabular}{l}
\[
\begin{align*}
\& {\left[\mathrm{H}^{+}\right]=\left(1 \times 10^{-14} /\left[\mathrm{OH}^{-}\right]\right)} \\
\& =2 \times 10^{-13}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1}\\
\& \mathrm{pH}=12.7 \tag{1}
\end{align*}
\] \\
OR
\[
\begin{align*}
\& \mathrm{pOH} /-\log 0.05=1.3 \tag{1}\\
\& \mathrm{pH}=(14-1.3=) 12.7 \tag{1}
\end{align*}
\] \\
Correct answer with no working scores 2 provided at least 3 SF Allow TE on first mark provided answer \(>7\)
\end{tabular} \& 13

13 \& 2

\hline
\end{tabular}

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 e (i)}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{(-)} \mathrm{Na}^{(+)}+\mathrm{H}_{2} \mathrm{O}$ ALLOW \rightleftharpoons for \rightarrow $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{Na}^{+}$for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{(-)} \mathrm{Na}^{(+)}$ IGNORE State symbols even if incorrect	1	

Question Number	Acceptable Answers	Reject	Mark
4e(ii)	Allow salt/ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COONa} /$ propanoate ion/ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-} /$base for A^{-} Allow propanoic acid/ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$ for HA First mark $\begin{aligned} & K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\ & O R \\ & \log K_{a}=\log \left[\mathrm{H}^{+}\right]+\log \left[\mathrm{A}^{-}\right] /[\mathrm{HA}] \end{aligned}$ OR $\mathrm{pH}=\mathrm{pK} \mathrm{a}_{\mathrm{a}}-\log [\mathrm{HA}] /\left[\mathrm{A}^{-}\right]$ ALLOW any of these equations re-arranged or used correctly Next four marks Mol NaOH before mixing $=$ $(20 \times 0.05 / 1000)=0.001$ and mol propanoic acid before mixing $=$ $\begin{equation*} (20 \times 0.25 / 1000)=0.005 \tag{1} \end{equation*}$ Mol propanoate in mixture $=0.001$ OR [propanoate] $=(0.001 / 40 \times 1000)$ $\begin{equation*} =0.025\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{equation*}$ Mol propanoic acid in mixture $=0.004$ OR [propanoic acid] $=(0.004 / 40 \times 1000)$ $=0.1\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ $\left[\mathrm{H}^{+}\right]=\frac{\left(1.3 \times 10^{-5}\right)(0.1)}{0.025}$ $\begin{equation*} \mathrm{pH}=4.28 / 4.3 \tag{1} \end{equation*}$ Correct pH with no working scores last 4 marks ALLOW Other methods leading to $4.28 \mathrm{e} . \mathrm{g}$. based on equal volumes being mixed so mol propanoate are in double the volume and so concentration is $0.025 \mathrm{~mol} \mathrm{dm}^{-3}$		5

Question Number	Acceptable Answers	Reject	Mark
4e(iii)	First mark The mixture contains a large amount/ reservoir of a (weak) acid/propanoic acid and its conjugate base/ propanoate ions /salt Second mark Only awarded if at least one equation given Added OH^{-}combines with H^{+} $\left(\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}\right)$ from propanoic acid followed by dissociation of more propanoic acid $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{H}^{+}$ OR Added OH^{-}combines with propanoic acid $\begin{align*} & \mathrm{OH}^{-}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}+ \\ & \mathrm{H}_{2} \mathrm{O} \tag{1} \end{align*}$ Third mark (pH is unchanged because added OH^{-} is removed) change in concentration of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}$and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$ is small / ratio [salt]/[acid] hardly changes		3

(Total for Question 4 = 15 marks)

Questio n Number	Acceptable Answers	Reject	Mark
5(a) (i)	$1^{\text {st }}$ mark: Identification of buffer Any mention of buffer solution / buffering (region) $\mathbf{2}^{\text {nd }}$ mark: Identification of species responsible for buffering action ammonia/ $/ \mathrm{NH}_{3}$ and ammonium ions $/ \mathrm{NH}_{4}{ }^{+}$ present (in significant concentrations) OR ammonia/ NH_{3} and ammonium chloride $/ \mathrm{NH}_{4} \mathrm{Cl}$ present (in significant concentrations) OR weak base and salt/conjugate acid present (in significant concentrations) OR B and BH^{+}present (in significant concentrations) Can be awarded from a correct equation $3^{\text {rd }}$ mark: For mention of how this buffer works on addition of small amounts of H^{+} ions (relatively large concentration/reservoir of) ammonia molecules react with added hydrogen ions/ $\mathrm{H}^{+} /$(hydrochloric) acid OR (relatively large concentration /reservoir of weak) base reacts with added hydrogen ions / $\mathrm{H}^{+} /$(hydrochloric) acid OR $\mathrm{H}^{+}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4}^{+}$ Allow reversible arrow OR Adding (hydrochloric) acid/ $\mathrm{H}^{+} /$hydrogen ions has negligible effect on ratio $\left[\mathrm{NH}_{3}\right]:\left[\mathrm{NH}_{4}{ }^{+}\right]$ Ignore references to buffering action on addition of OH^{-}(not relevant here) Ignore general descriptions of buffer solution eg resists change in pH when small amounts of acid or alkali added	Acidic buffer Weak acid and its conjugate base HA and A^{-}	3

www.igexams.com

Question Number	Acceptable Answers	Mark
$\begin{aligned} & \text { 5(a) } \\ & \text { (ii) } \end{aligned}$	Note - the equations $\begin{aligned} & \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \\ & \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+} \end{aligned}$ score all three marks Note -the equation $\mathrm{NH}_{4}^{+} \rightarrow \mathrm{NH}_{3}+\mathrm{H}^{+}$ scores 2 marks, but if (aq) state symbols are given, scores 3 marks $1^{\text {st }}$ mark: Ammonium ions $/ \mathrm{NH}_{4}{ }^{+}$present (at equivalence point) OR ammonium chloride/ammonium salt $2^{\text {nd }}$ mark Ammonium (ions) / $\mathrm{NH}_{4}{ }^{+}$react with water /hydrolysed by water /dissociate in water Ignore ammonium chloride reacts with water $3^{\text {rd }}$ mark $\mathrm{NH}_{4}{ }^{+} \rightarrow \mathrm{NH}_{3}+\mathrm{H}^{+}$ OR $\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$ Allow $\begin{equation*} \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+} \tag{1} \end{equation*}$ Note if no other mark awarded Just 'strong acid - weak base (titration)' / ammonium chloride is the salt of a strong acid and a weak base scores (1) only	3

Question Number	Acceptable Answers	Mark
$\begin{aligned} & \text { 5(a) } \\ & \text { (iii) } \end{aligned}$	If final answer is 1.6(2), with correct working or without working, award 4 marks $\begin{align*} & \text { Mol of ammonia used }=\left(\begin{array}{l} 25 / 1000 \times 0.024) \\ =6 \times 10^{-4} \mathrm{~mol} \end{array}\right. \\ & \begin{aligned} & \text { and } \\ & \text { Mol of acid added }=(40 / 1000 \times 0.054) \\ &= 2.16 \times 10^{-3} \end{aligned} \end{align*}$ Mol of excess acid $=2.16 \times 10^{-3}-6 \times 10^{-4}$ $\begin{equation*} =1.56 \times 10^{-3} \mathrm{~mol} \tag{1} \end{equation*}$ $\begin{align*} & {\left[\mathrm{H}^{+}\right]=1.56 \times 10^{-3} /(65 / 1000)=0.024 \mathrm{~mol} \mathrm{dm}^{-3}} \tag{1}\\ & \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=1.6(2) \tag{1} \end{align*}$ Ignore SF except 1 SF Allow TE for $2^{\text {nd }}, 3^{\text {rd }}$ marks Allow TE for $4^{\text {th }}$ mark provided pH is less than 7 and it is based on some use of data in question	4

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{5 (b) (i)}$	$\left.\begin{array}{l}\text { EITHER } \\ {\left[\mathrm{H}^{+}\right]^{2}=5.5 \times 10^{-13} \text { or }\left[\mathrm{H}^{+}\right]=\sqrt{ } 5.5 \times 10^{-13} /} \\ 7.416 \times 10^{-7} \\ (\mathrm{~mol} \mathrm{dm}\end{array}\right)$	6.13 with no working	$\mathbf{2}$
	$\mathrm{pH}=-\log \sqrt{ } 5.5 \times 10^{-13} \quad(=6.12982 / 6.13)$		
	(1)		
	OR		
$\mathrm{pK}=12.26$	(1)		
$\mathrm{pH}=1 / 2 \mathrm{pK}_{\mathrm{w}}(=6.130)$	(1)		

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
5(b) (ii)	Neutral (1)	Acidic or alkaline for both	2
marks			
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right] /$/equal amounts of H^{+}and	OH^{-}ions OR Both $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$have increased by the same amount	(1)	

Total for Question 5 = 14 marks

