Aldehydes and Ketones

Mark Scheme 1

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Торіс	Rates, Equilibria & Further Organic Chemistry
Sub Topic	Aldehydes and Ketones
Booklet	Mark Scheme 1

Time Allowed:	32 minutes
Score:	/26
Percentage:	/100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question Co Number	orrect Answer	Reject	Mark
1a C			1

Question Number	Correct Answer	Reject	Mark
1b	С		1

Question Number	Correct Answer	Reject	Mark
1c	D		1

Question Number	Correct Answer	Reject	Mark
2	D		1

Question Number	Correct Answer	Reject	Mark
3	A		1

Question Number	Correct Answer	Reject	Mark
4	Α		(1)

Question Number	Correct Answer	Reject	Mark
5	D		(1)

Question Number	Correct Answer	Reject	Mark
6	D		(1)
Question Number	Correct Answer	Reject	Mark
7	В		(1)
Question Number	Correct Answer	Reject	Mark
8	D		(1)

Question Number	Correct Answer	Reject	Mark
9	В		1
-			

Question	Correct Answer	Reject	Mark
Number			
10	D		1

Question Number	Acceptable Answers	Reject	Mark
11(a)(i)	(fractional) distillation / steam distillation / solvent extraction Ignore filtration /use of separating funnel	recrystallisa tion	1

Question Number	Acceptable Answers		Mark
11(a) (ii)	СН ₂ ОН 3С ₁₅ Н ₃₁ СООСН ₃ + СНОН СН ₂ ОН		2
	3 C ₁₅ H ₃₁ COOCH ₃ Allow 3 CH ₃ OOCC ₁₅ H ₃₁ Allow the correct formulae written three times Correct formula for propane-1,2,3-triol Mark independently	(1) (1)	

Question Number	Acceptable Answers	Mark
11(a) (iii)	Sodium hydroxide / potassium hydroxide / NaOH / KOH / OH ⁻	1
	Allow sulfuric acid / H_2SO_4 or other named strong acids or strong alkalis /HCl / just `acid' / just `base' / just `alkali' / just H ⁺	
	Ignore concentrations of reagents, incorrect or missing state symbols	

Question Number	Acceptable Answers	Mark
11(b)	Do not award any marks for processing the plants or seeds into bio-diesel as the question is about growing	4
	Award (1) mark for any statement in the following headings:	
	GREEN e.g. samphire / non-edible seeds / both are renewable / (produce bio-diesel that is) carbon neutral Ignore just "green / sustainable"	
	LAND e.g. samphire uses land unlikely to be used for growing other food crops / no need to cut down trees to provide land / non-edible seed take up land otherwise used to grow crops	
	WASTE e.g. non-edible seeds have no other use / would be thrown away / can only be used for oil production	
	FOOD e.g. using samphire for bio-diesel reduces availability as a food source	
	FOOD CHAIN e.g. using samphire disrupts the food chain for (marine) organisms	
	GROWING e.g. samphire doesn't need to be irrigated / can take water or nutrients from the marshland Ignore just 'easier to grow' Ignore does not need specific conditions	
	WEATHER e.g. samphire growing is subject to coastal weather	
	TECHNOLOGY e.g. using samphire needs new / improved technology OR machines to farm coastal areas OR higher transport costs (from marshland to production plant) Ignore technology for processing plants or seeds	
	WILL IT WORK? e.g. samphire gives unknown yield / use may need more research	
	To score the maximum of 4 marks, the response must include a decision about which is greener but there is no separate mark for this.	

Question Number	Acceptable Answers	Reject	Mark
12(a)	ethyl dodecanoate Allow ethyldodecanoate ethyl dodecan-1-oate	ethyl decanoate / ethyl dodecanal/ ethyl dodecate / ethanoyl dodecanoate	1

Question Number	Acceptable Answers	Mark
12(b)	Reducing (agent) Allow (source of) nucleophile Ignore source of hydride ions	1

Question Number	Acceptable Answers	Mark
12(c)	Prevent further reduction / reduction of the aldehyde (to an alcohol) Allow to prevent further reaction of dodecanal	1
	/aldehyde	
	Ignore reference to rates	
	Ignore higher yield/ prevent side reactions	
	Ignore exothermic / optimum temperature	
	Ignore volatility	

Question Number	Acceptable Answers		Mark
12(d)	If final answer is 3.74 (g), with or without working, award 3 marks		3
	Moles ester = 5.26 / 228 = 0.02307 mol NOTE : Do not allow this rounded to 0.02	(1)	
	EITHER So mass of aldehyde at 100% = 0.02307×184 = 4.2449 (g)	(1)	
	But yield is 88%, so actual mass = 4.245×0.88 = $3.7355 / 3.74$ (g) Allow 3.73 g if 4.24 g of aldehyde used	(1)	
	OR But yield is 88%, so actual moles = 0.02307 x 0.88 = 0.02(03)	(1)	
	So mass of aldehyde formed = 0.0203 x 184 = 3.7355 / 3.74 /3.7 (g)	(1)	
	Allow TE for 2 nd and 3 rd marks Ignore SF in final answer except 1SF		

Total for Question 12 = 6 marks