Aldehydes and Ketones

Mark Scheme 2

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Торіс	Rates, Equilibria & Further Organic Chemistry
Sub Topic	Aldehydes and Ketones
Booklet	Mark Scheme 2

Time Allowed:	74 minutes	
Score:	/61	
Percentage:	/100	

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question Number	Accepta	able Answers					Mark
1(a)(i)		r				1	3
		CH ₃ CH ₂ CH ₂ CH ₃	O ₂	CH₃CO₂H	H ₂ O		
	Δ <i>H</i> ^e _f / kJ mol ⁻¹	-126.5	0	-484.5	-285.8		
	S [°] / J mol ⁻¹ K ⁻¹	310.1	205	159.8	69.9		
	4 / 5 va 2/3 val 0/1 val Ignore	s correct 3 mark alues correct 2 n ues correct 1 ma ues correct 0 ma values multiplia n to correct valu 6)	narks ark arks ed by t				

Question Number	Acceptable Answers	Mark
1(a) (ii)	If answer is - 2256.6 / - 2257 (kJ mol ⁻¹), award 2 marks $[(2 \times -285.8) + (4 \times -484.5)]$ - (2×-126.5) (1)	2
	 = - 2256.6 / - 2257 (kJ mol⁻¹) (1) Allow answer converted to J mol⁻¹ Allow TE from incorrect data in table in (a)(i) Allow (1) for cycle wrong way round eg (+) 2256.6 / (+)2257 (kJ mol⁻¹) Allow (1) for using correct values but not multiplied by balancing numbers eg -643.8 (kJ mol⁻¹) Ignore SF except 1SF 	

Question Number	Acceptable Answers		Mark
1(a)	If answer is -866.2 (J mol ⁻¹ K ⁻¹), award 2 mark	s	2
(iii)	[(2 x 69.9) + (4 x 159.8)] – [(2 x 310.1) + (5 x 205)] (1	L)	
	-866.2 (J mol-1K-1) (1) Allow answer converted to kJ mol ⁻¹ K ⁻¹	L)	
	Allow TE from incorrect data in table in (a)(i)		
	Allow (1) for cycle wrong way round eg (+) 866.2(J mol ⁻¹ K^{-1})		
	Allow (1) for using correct values but error(s) in balancing numbers eg -285.4 (J mol ^{-1} K ^{-1})		
	Ignore SF except 1SF		

Question Number	Acceptable Answers	Mark
1(a) (iv)	If answer is $(+)6706.3 \text{ J mol}^{-1} \text{ K}^{-1}$ or $(+)6.7063 \text{ kJ mol}^{-1} \text{ K}^{-1}$, award 3 marks	3
	$\Delta S_{\text{surr}} \text{ at } 298 \text{ K} = -\Delta H/\text{T}$ = - (-2256.6 x 1000) / 298 (1)	
	= 7572.483 (J mol ⁻¹ K ⁻¹) Allow rounding to 3SF or more (1)	
	Allow correct answers given in kJ mol ⁻¹ K ⁻¹ eg 7.5725 kJ mol ⁻¹ K ⁻¹	
	$\Delta S_{\text{tot}} = \Delta S_{\text{surr}} + \Delta S_{\text{sys}} / \Delta S_{\text{tot}} = -866.2 + 7572.5 / \Delta S_{\text{tot}} = (+)6706.3 \text{ J mol}^{-1} \text{ K}^{-1}$ OR	
	$-0.8662 + 7.5725 / \Delta S_{\text{tot}} = (+)6.7063 \text{ kJ mol}^{-1} \text{ K}^{-1} $ (1)	
	Allow TE from (a)(ii) and (a)(iii)	
	Ignore SF except 1SF in final answer	

Question Number	Acceptable Answers	Mark
1(a)(v)	1st mark: consideration of ΔS_{system} ΔS_{sys} is not (significantly) changed /is unchanged/remains (approximately) constant 2nd mark: consideration of ΔS_{surr} (Higher temperature makes) ΔS_{surr} /- Δ H/T is smaller /decreases / less positiveComment	3
	Allow more negative (1) No TE if ΔS_{surr} is -ve in (a)(iv)	
	3rd mark: consideration of ΔS_{total} EITHER reduces ΔS_{tot} / makes ΔS_{tot} less positive / makes ΔS_{tot} closer to zero (so would not produce a greater yield)	
	OR ΔS_{tot} is very large (so <i>K</i> is very large) so the effect of change in temperature is negligible (1)	
	NOTE if ΔS_{surr} is -ve in (iv), then allow increases ΔS_{tot} / makes ΔS_{tot} more positive / makes ΔS_{tot} closer to zero (so would produce a greater yield).	
	NOTE IF no reference / an incorrect reference made to ΔS_{system} , then only the 2nd and 3rd marks can be awarded	

Question Number	Acceptable Answers	Mark
1(b)	No e: All we are looking for are the correct ranges, exactly as given below (i.e. the bonds do not have to be stated, as they follow from the correct ranges) Peak between 1725 – 1700 (cm ⁻¹) (would appear due to C=O group (in alkyl carboxylic acid)) Allow peak between 3300 – 2500 (cm ⁻¹) (due to OH group (in carboxylic acid))	1

Question Number	Acceptable Answers	Mark
1(c)	increase sourness / sharpness of flavour OR preservative / prevents growth of microbes / prevents food decay / prevents food decomposition /kills microbes OR acidity regulator / buffer Allow improves flavouring	1
	Ignore reduce pH/ make (slightly) acidic/just `flavouring'	

Question Number	Acceptable Answers		Mark
1(d)(i)	Working must be shown		3
	EITHER		
	% of oxygen = 40%	(1)	
	Amount of $C = 52.5/12 = 4.375$ (mol)		
	Amount of $H = 7.5/1 = 7.5 (mol)$		
	Amount of $O = 40/16 = 2.5$ (mol)	(1)	
	Ratio 1.75 C : 3 H : 1 O		
	$\equiv 7 \text{ C} : 12 \text{ H} : 4 \text{ O}$		
	Ignore SF in mol and ratios OR	(1)	
	% of C in $C_7H_{12}O_4 = \underline{84} \times 100 = 52.5\%$	(1)	
	160	(4)	
	% of H in $C_7H_{12}O_4 = \frac{12}{160} \times 100 = 7.5\%$	(1)	
	% of O in $C_7H_{12}O_4 = \frac{64}{64} \times 100 = 40$ %	(1)	
	160		
	OR No C atoms = <u>52.5 x 160</u> = 7	(1)	
	100×12	(1)	
	No H atoms = 7.5×160 = 12	(1)	
	100 × 1	(1)	
	No O atoms = $\frac{40 \times 160}{100 \times 16}$ = 4	(1)	

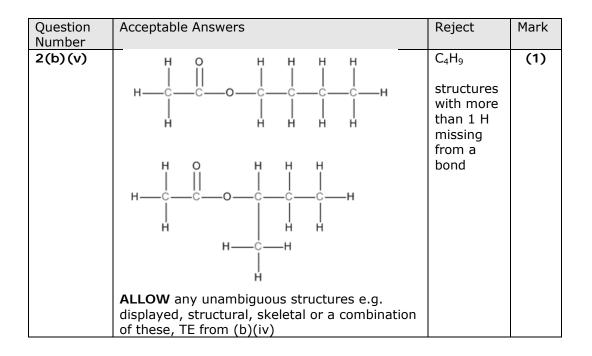
Question Number	Acceptable Answers	Reject	Mark
1(d) (ii)	Largest/highest m/e or m/z value (is 160) OR Mass (/charge ratio) or m/e or m/z of molecular/parent ion/ $C_7H_{12}O_4^+$ (=160(= M_r)) Allow last peak / peak on rhs (is at 160) Allow peak before last (is at 160 due to M+1 peak at 161)	Highest peak Just 'there is a peak at 160'	1

Question Number	Acceptable	Answers				Mark
1(d) (iii)	For 'chemical shift' column, allow any range or any single value within range and allow range in the opposite order eg 3.0-1.8					4
	Feature of compound X	Chemical shift / ppm for TMS	Splitting patterns	Relativ e area below peak		
	C H ₃	0.1 - 1.9	doublet	3 (1)		
	С н	1.8 - 3.0 (1)	septuplet / heptuplet / splits into 7 / 7 splits (1)	1		
	соо н	10 - 12.0 (1)	singlet			
	Allow hepto indicate 7	et / septet /s	sevenlet and sin	nilar word	s that	

Total for Question 1 = 23 marks

Question Number	Acceptable Answers	Mark
2(a)(i)	$ (K_c =) [CH_3COOCH_2CH_3][H_2O] [CH_3COOH][CH_3CH_2OH] $	(1)

Question Number	Acceptable Answers		Mark
<u>Number</u> 2(a)(ii)	Stand alone marks the enthalpy change is (very) small/close to zero OR reaction is slightly exothermic therefore, (the magnitude of) $\Delta S_{surroundings} (= -\Delta H/T)$ changes very little IGNORE $\Delta S_{surroundings}$ is positive/small/less/decreases $\Delta S_{total} / K_c$ changes very little (provided there is no char state) Ignore references to ΔS_{system}	(1) (1) nge of (1)	(3)
	,		


Question Number	Acceptable Answers	Reject	Mark
2(a)*(iii)	If final answer is 5.1143/5.1, award 6 marks		(6)
	If not, award marks as follows		
	Marks 1 and 2If mol CH_3COOH left = 0.040(2)Otherwise:		
	mol NaOH/total mol of acid = $45.0 \times 1.00/1000 = 0.045$ (1)		
	mol CH ₃ COOH left = mol NaOH/total mol of acid - 0.005 (1)		
	Marks 3 to 6(1)mol CH_3CH_2OH at eqm = 0.140(1)mol $CH_3COOCH_2CH_3$ at eqm = 0.080(1)mol H_2O at eqm = 0.358(1)		
	$ \mathcal{K}_{c} = \underbrace{0.080}_{V} \times \underbrace{0.358}_{V} \\ \underbrace{0.040}_{V} \times \underbrace{0.140}_{V} \\ = 5.1143 $ (1)	any units	
	consequential on their expression for K_c shown/used here and their numbers of moles		
	ALLOW K_c expression without the Vs but do not allow this sixth mark if the moles are divided by a specific volume e.g. 45 to calculate the concentration		
	IGNORE SF except 1 SF in final answer		

Question Number	Acceptable Answers	Mark
2(b)(i)	EITHER C : H : O mol $\underline{64.9}$: $\underline{13.5}$: $\underline{21.6}$ 12 1 16 = 5.408: 13.5 : 1.35 = 4.006 : 10 : 1 = 4 : 10 : 1 (1)	(2)
	use of 74 to show molecular formula is $C_4H_{10}O$ eg M _r is (4x12)+(10x1)+16 =74 (1)	
	OR C atoms = $\frac{64.9 \times 74}{100 \times 12} = 4$	
	H atoms = $\frac{13.5 \times 74}{100 \times 1}$ = 10	
	O atoms = $\frac{21.6 \times 74}{100 \times 16}$ = 1 This may be done in 2 steps eg C $\frac{64.9 \times 74}{100}$ = 48 $\frac{48}{12}$ = 4 All 3 correct scores 2 Any 2 correct scores 1	
	$ \begin{array}{l} \mathbf{OR} \\ \% \ C = \frac{48 \times 100}{74} = 64.9 \end{array} $	
	% H = $\frac{10 \times 100}{74}$ = 13.5	
	% O = $\frac{16 \times 100}{74}$ = 21.6	
	All 3 correct scores (2)	
	Any 2 correct scores (1)	

Question Number	Acceptable Answers	Reject	Mark
2(b) (ii)	H H H H H H H H H H H H H H H H H H H	molecular formula OH-C on left of structure once only more than 1 H missing from a bond	(2)
	All FOUR correct scores(2)Two or three correct scores(1)ALLOW all four skeletal/structural/mixture of displayed and structural(1)IGNORE optical isomers of butan-2-ol		

Question Number	Acceptable Answers	Mark
2(b)(iii)	$\begin{array}{c} CH_{3}C^{+}HOH/[CH_{3}CHOH]^{+} \\ \textbf{ALLOW} CH_{3}CHOH^{+}/^{+}CH_{3}CHOH \end{array} \tag{1}$	(2)
	$^{+}CH_{2}CH_{2}OH/[CH_{2}CH_{2}OH]^{+}$ ALLOW CH ₂ CH ₂ OH ⁺ /C ₂ H ₄ OH ⁺ (1)	
	Only penalise missing + once.	
	Note: If no structures given, allow 1 mark for $C_2H_5O^+$ but do not award the mark if $C_3H_9^+$ is given as well	

Question Number	Acceptable Answers	Mark
2(b)(iv)	butan-1-ol and butan-2-ol OR structures OR identified by number from (b)(ii)	(1)

Question Number	Acceptable Answers	Mark
2(b)(vi)	No structure is given or an ester formed from a different alcohol eg propanol scores (O)	(5)
	First mark - structure Correct structure (1)	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	BACEProtons can be labelled or circled and labelled	
	ALLOW any unambiguous structure eg displayed, structural, skeletal or a combination of these.	
	Five peaks correct scores (2) Three or four peaks correct scores (1)	
	Splitting Any two correct scores (2) No splitting for peak B as there is no H attached to the adjacent carbon OR	
	application of the (n+1) rule to peak A (which is a multiplet/sextet) OR	
	application of the (n+1) rule to peak C (which is a multiplet/quintet) OR	
	application of the (n+1) rule to peak D (which is a doublet) OR application of the (n+1) rule to peak E (which is a triplet)	
	If ester has been formed from butan-1-ol, maximum 2 marks for identification of peaks B , C and E and 2 marks for correct splitting in any two of peaks B , C and E	
	If ester has been formed from either of the other 2 alcohols, 1 ark for identification of peak ${f B}$, 1 mark for explaining why there is no splitting in peak ${f B}$	

(Total for Question 2 = 23 marks)

Question Number	Acceptable Answers	Reject	Mark
3 (a)	$CH_3CH_2CH_2C\equiv N$	CH ₃ CH ₂ CH ₂ CN	
	ALLOW displayed formula	molecular formula	1

Question Number	Acceptable Answers		Reject	Mark
3(b)	IGNORE conditions and solvents, ever incorrect	ı if	incorrect formulae, including subscripts written as large numbers or superscripts eg LiAIH4/LiAIH ⁴ any charges	
	Step 1 LiAlH ₄ IGNORE dry ether/ followed by H ₂ O ALLOW lithium tetrahydridoaluminate((III)) lithium aluminium hydride Step 2 PCl ₅	(1)	NaBH₄ H₂/ hydrogen	
	ALLOW phosphorus(V) chloride/ phosphorus pentachloride HCl /(concentrated) hydrochloric acid PCl ₃ / phosphorus(III) chloride/ phosphorus trichloride SOCl ₂ / thionyl chloride Step 4	(1)	dilute hydrochloric acid	
	HCI/ HCI(aq)/ HCI in water or H ₂ O ALLOW any strong acid/ H ⁺ / NaOH/ sodium hydroxide followed by HCI / hydrochloric acid	(1)	just 'dilute acid' just 'concentrated acid' just 'H ₂ O/ water'	
	Step 5 CH ₃ CH ₂ OH/ C ₂ H ₅ OH (and any strong ac	cid)	OHCH ₂ CH ₃	
	ALLOW ethanol	(1)		4

Question Number	Acceptable Answers	Reject	Mark
3 (c)	$2CH_3CH_2CH_2COOH + Na_2CO_3 \rightarrow$		
	$2CH_3CH_2CH_2COO^{(-)}Na^{(+)} + CO_2 + H_2O$		
	ALLOW		
	butanoic acid as $CH_3CH_2CH_2CO_2H/CH_3(CH_2)_2$ COOH/CH ₃ (CH ₂) ₂ CO ₂ H/C ₃ H ₇ COOH/C ₃ H ₇ CO ₂ H		
	and the salt as $CH_3CH_2CH_2CO_2H / CH_3(CH_2)_2 COO^{(-)}Na^{(+)} / CH_3(CH_2)_2CO_2^{(-)}Na^{(+)} / C_3H_7COO^{(-)}Na^{(+)} / C_3H_7CO_2^{(-)}Na^{(+)}$		
	all product formulae correct correct balanced equation(1) (1)		
	ALLOW correct ionic equation for (1) $2CH_3CH_2CH_2COOH + CO_3^{2-} \rightarrow$		
	$2CH_3CH_2CH_2COO^- + CO_2 + H_2O$		
	IGNORE state symbols even if incorrect		2

Question Number	Acceptable Answers	Reject	Mark
3(d)	Any two correct points from: First point butanoic acid has 4 peaks, butan-1-ol has 5 peaks OR butanoic acid has one peak fewer OR butan-1-ol has one peak more ALLOW butanoic acid has fewer peaks/ butan-1-ol has more peaks (1) IGNORE butanoic acid has 4 proton environments and butan-1-ol has 5	incorrect numbers of peaks quoted different number of peaks	
	Second point ratio of peak heights/ area under each peak is 3:2:2:1 for butanoic acid and 3:2:2:2:1 for butan-1-ol (1) Third point the OH (hydrogens) have different chemical shifts OR butanoic acid has a (COOH) peak at 10-12 (ppm) (and butan-1-ol does not) OR butan-1-ol has (an OH) peak at 2-4 (ppm) (and butanoic acid does not) (1)	area under peaks in the ratio 8:10 incorrect data quoted	
	Fourth point peak at 3.0-1.8 (ppm) for H-C-C=O in acid and not in the alcohol OR peak at 3.0-4.4 (ppm) for H-C-O- in alcohol and not in acid OR the hydrogens on the alpha carbon have different chemical shifts (1) IGNORE reference to splitting patterns	incorrect data quoted	2

Question Number	Acceptable Answers	Reject	Mark
3(e)	First mark – bond and range C=O(stretching) in butanoic acid (has an absorption at) 1725 – 1700 (cm ⁻¹) (1)	COOH/ incorrect name of bond/ 1740 – 1720 (cm ⁻¹)/ other incorrect range	
	Second mark – bond and both ranges O-H/ OH (stretching) in butan-1-ol 3750 – 3200 (cm ⁻¹) and O-H/ OH (stretching) in butanoic acid 3300 – 2500 (cm ⁻¹) ALLOW	incorrect name of bonds	
	COOH in butanoic acid (1)		
	ALLOW any wavenumber or range of wavenumbers within the ranges above and ranges written in reverse order		
	If no other marks are awarded, then ALLOW 1 mark if all 3 ranges are identified but bonds are missing/incorrect		
	IGNORE reference to fingerprint region		2

Question Number	Acceptable Answers	Reject	Mark
3(f)	\sim		
	IGNORE bond lengths and bond angles ALLOW any orientation		1

Question Number	Acceptable Answers	Reject	Mark
3(g)	First step – PCI ₅ / phosphorus(V) chloride/ phosphorus pentachloride	HCI	
	ALLOW PCl ₃ / phosphorus(III) chloride/ phosphorus trichloride SOCl ₂ / thionyl chloride (1)		
	Second step - conditional on first mark		
	$CH_{3}CH_{2}OH/C_{2}H_{5}OH/ethanol$ (1)		
	Advantage - stand alone mark higher yield (of ester) OR reaction goes to completion/ not an equilibrium reaction/ not reversible OR no heat energy needed/ reacts at room temperature/ no (concentrated acid) catalyst needed (1)		
	IGNORE atom economy/ faster/ requires less energy		3

Total for Question 3 = 15 marks