Aldehydes and Ketones

Mark Scheme 2

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	Rates, Equilibria \& Further Organic Chemistry
Sub Topic	Aldehydes and Ketones
Booklet	Mark Scheme 2

Time Allowed:	74 minutes
Score:	$/ 61$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$

Question Number	Acceptable Answers	Mark
$\begin{aligned} & \text { 1(a) } \\ & \text { (ii) } \end{aligned}$	If answer is - 2256.6 / - 2257 ($_{\text {kJ mol }}{ }^{-1}$), award 2 marks $\begin{align*} & {[(2 x-285.8)+(4 x-484.5)]} \\ & -(2 x-126.5) \tag{1} \end{align*}$ $\begin{equation*} =-2256.6 /-2257\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$ Allow answer converted to $\mathrm{J} \mathrm{mol}^{-1}$ Allow TE from incorrect data in table in (a)(i) Allow (1) for cycle wrong way round $\mathrm{eg}(+) 2256.6 /(+) 2257\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Allow (1) for using correct values but not multiplied by balancing numbers eg $-643.8\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Ignore SF except 1SF	2

Question Number	Acceptable Answers	Mark
$\begin{aligned} & \text { 1(a) } \\ & \text { (iii) } \end{aligned}$	If answer is -866.2 ($\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$), award 2 marks $\begin{align*} & {[(2 \times 69.9)+(4 \times 159.8)]-} \\ & \quad[(2 \times 310.1)+(5 \times 205)] \tag{1}\\ & -866.2\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \tag{1} \end{align*}$ Allow answer converted to $\mathrm{kJ} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ Allow TE from incorrect data in table in (a)(i) Allow (1) for cycle wrong way round eg (+) $866.2\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ Allow (1) for using correct values but error(s) in balancing numbers eg -285.4 ($\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$) Ignore SF except 1SF	2

Question Number	Acceptable Answers	Mark
$\begin{aligned} & \text { 1(a) } \\ & \text { (iv) } \end{aligned}$	If answer is (+)6706.3 $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ or (+)6.7063 $\mathrm{kJ} \mathrm{mol}^{-1} \mathrm{~K}^{\mathbf{- 1}}$, award 3 marks $\begin{align*} & \Delta \mathrm{S}_{\text {surr }} \text { at } 298 \mathrm{~K}=-\Delta \mathrm{H} / \mathrm{T} \\ & =-(-2256.6 \times 1000) / 298 \tag{1}\\ & =7572.483 \ldots\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \end{align*}$ Allow rounding to 3 SF or more Allow correct answers given in $\mathrm{kJ} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ eg 7.5725 $\mathrm{kJ} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ $\begin{align*} & \Delta \mathrm{S}_{\text {tot }}=\Delta \mathrm{S}_{\text {surr }}+\Delta \mathrm{S}_{\text {sys }} / \Delta \mathrm{S}_{\text {tot }}=-866.2+7572.5 / \Delta \mathrm{S}_{\text {tot }}= \\ & (+) 6706.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & \mathbf{O R} \\ & -0.8662+7.5725 / \\ & \Delta \mathrm{S}_{\text {tot }}=(+) 6.7063 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \tag{1} \end{align*}$ Allow TE from (a)(ii) and (a)(iii) Ignore SF except 1SF in final answer	3

www.igexams.com

Question Number	Acceptable Answers	Mark
1(a)(v)	1st mark: consideration of $\boldsymbol{\Delta} \mathrm{S}_{\text {system }}$ $\Delta \mathrm{S}_{\text {sys }}$ is not (significantly) changed /is unchanged /remains (approximately) constant 2nd mark: consideration of $\boldsymbol{\Delta} S_{\text {surr }}$ (Higher temperature makes) $\Delta \mathrm{S}_{\text {surr }} /-\Delta \mathrm{H} / \mathrm{T}$ is smaller / decreases / less positive Comment Allow more negative No TE if $\Delta \mathrm{S}_{\text {surr }}$ is -ve in (a)(iv) 3rd mark: consideration of $\boldsymbol{\Delta} \mathbf{S}_{\text {total }}$ EITHER reduces $\Delta \mathrm{S}_{\text {tot }} /$ makes $\Delta \mathrm{S}_{\text {tot }}$ less positive / makes $\Delta \mathrm{S}_{\text {tot }}$ closer to zero (so would not produce a greater yield) OR $\Delta \mathrm{S}_{\text {tot }}$ is very large (so K is very large) so the effect of change in temperature is negligible NOTE if $\Delta \mathrm{S}_{\text {surr }}$ is -ve in (iv), then allow increases $\Delta \mathrm{S}_{\text {tot }} /$ makes $\Delta \mathrm{S}_{\text {tot }}$ more positive / makes $\Delta \mathrm{S}_{\text {tot }}$ closer to zero (so would produce a greater yield). NOTE IF no reference / an incorrect reference made to $\Delta \mathrm{S}_{\text {system, }}$, then only the 2nd and 3rd marks can be awarded	3

www.igexams.com

Question Number	Acceptable Answers	Mark
$\mathbf{1 (b)}$	No e: All we are looking for are the correct ranges, exactly as given below (i.e. the bonds do not have to be stated, as they follow from the correct ranges)	$\mathbf{1}$
Peak between $\mathbf{1 7 2 5} \mathbf{- 1 7 0 0}\left(\mathrm{cm}^{-1}\right)$ (would appear due to C=O group (in alkyl carboxylic acid)) Allow peak between 3300 - 2500 $\left(\mathrm{cm}^{-1}\right)$ (due to OH group (in carboxylic acid))		

Question Number	Acceptable Answers	Mark
$\mathbf{1 (c)}$	increase sourness / sharpness of flavour OR preservative / prevents growth of microbes / prevents food decay / prevents food decomposition /kills microbes OR acidity regulator / buffer Allow improves flavouring Ignore reduce pH/ make (slightly) acidic/just 'flavouring'	$\mathbf{1}$

Question	Acceptable Answers		Mark
1(d)(i)	Working must be shown EITHER $\%$ of oxygen $=40 \%$ Amount of $\mathrm{C}=52.5 / 12=4.375(\mathrm{~mol})$ Amount of $\mathrm{H}=7.5 / 1=7.5(\mathrm{~mol})$ Amount of $O=40 / 16=2.5(\mathrm{~mol})$ Ratio $1.75 \mathrm{C}: 3 \mathrm{H}: 1 \mathrm{O}$ 三 $7 \mathrm{C}: 12 \mathrm{H}: 4 \mathrm{O}$ Ignore SF in mol and ratios OR $\%$ of C in $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{4}=\frac{84}{160} \times 100=52.5 \%$ $\%$ of H in $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{4}=\frac{12}{160} \times 100=7.5 \%$ $\%$ of O in $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{4}=\frac{64}{160} \times 100=40 \%$ OR No C atoms $=\frac{52.5 \times 160}{100 \times 12}=7$ No H atoms $=\frac{7.5 \times 160}{100 \times 1}=12$ No O atoms $=\frac{40 \times 160}{100 \times 16}=4$	(1) (1)	3
Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & \text { 1(d) } \\ & \text { (ii) } \end{aligned}$	Largest/highest m / e or m / z value (is 160) OR Mass (/charge ratio) or m / e or m / z of molecular/parent ion/ $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{4}{ }^{+}$ $\left(=160\left(=M_{r}\right)\right)$ Allow last peak / peak on rhs (is at 160) Allow peak before last (is at 160 due to M+1 peak at 161)	Highest peak Just 'there is a peak at 160^{\prime}	1

Question Number	Acceptable Answers				Mark
$\begin{aligned} & \text { 1(d) } \\ & \text { (iii) } \end{aligned}$	For 'chemical shift' column, allow any range or any single value within range and allow range in the opposite order eg 3.0-1.8				4
	Feature of compound X	Chemical shift / ppm for TMS	Splitting patterns	Relativ e area below peak	
	CH_{3}	0.1-1.9	doublet	3 (1)	
	CH	$\begin{aligned} & 1.8-3.0 \\ & \text { (1) } \end{aligned}$	septuplet / heptuplet / splits into 7 / 7 splits (1)	1	
	COOH	$\begin{aligned} & 10-12.0 \\ & \text { (1) } \end{aligned}$	singlet		
	Allow heptet / septet /sevenlet and similar words that indicate 7				

www.igexams.com

Question Number	Acceptable Answers	Mark
$\mathbf{2 (a) (i)}$	$\left(\mathrm{K}_{\mathrm{c}}=\right)\left[\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$ $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right]$	(1)
	ALLOW $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ for ethanol ALLOW CH ALLOW $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} / \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5} / \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$ for ethyl ethanoate IGNORE state symbols, even if incorrect	

Question Number	Acceptable Answers	Mark
2(a)(ii)	Stand alone marks the enthalpy change is (very) small/close to zero OR reaction is slightly exothermic therefore, (the magnitude of) $\Delta \mathrm{S}_{\text {surroundings }}(=-\Delta \mathrm{H} / \mathrm{T})$ changes very little IGNORE $\Delta \mathrm{S}_{\text {surroundings }}$ is positive/small/less/decreases $\Delta S_{\text {total }} / K_{c}$ changes very little (provided there is no change of state) Ignore references to $\Delta \mathrm{S}_{\text {system }}$	(3)

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
2(a)*(iii)	If final answer is 5.1143/ 5.1, aw ard 6 marks If not, award marks as follows Marks 1 and 2 If mol CH 33 COOH left $=0.040$ Otherwise: mol $\mathrm{NaOH} /$ total mol of acid $\begin{equation*} =45.0 \times 1.00 / 1000=0.045 \tag{1} \end{equation*}$ $\mathrm{mol} \mathrm{CH} 3 \mathrm{COOH}_{\text {left }}=\mathrm{mol} \mathrm{NaOH} /$ total mol of acid $\begin{equation*} -0.005 \tag{1} \end{equation*}$ Marks 3 to 6 $\mathrm{mol} \mathrm{CH} \mathrm{CH}_{2} \mathrm{OH}$ at eqm $=0.140$ $\mathrm{mol} \mathrm{CH} 3 \mathrm{COOCH}_{2} \mathrm{CH}_{3}$ at eqm $=0.080$ $\mathrm{mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ at eqm $=0.358$ $\begin{align*} \mathrm{K}_{\mathrm{C}}= & \frac{0.080}{\frac{\mathrm{~V}}{} \times \frac{0.358}{\mathrm{~V}}} \\ & \frac{0.040}{\mathrm{~V}} \times \frac{0.140}{\mathrm{~V}} \tag{1}\\ = & 5.1143 \end{align*}$ consequential on their expression for K_{c} shown/used here and their numbers of moles ALLOW K_{c} expression without the Vs but do not allow this sixth mark if the moles are divided by a specific volume e.g. 45 to calculate the concentration I GNORE SF except 1 SF in final answer	any units	(6)

www.igexams.com

Question Number	Acceptable Answers	Mark
2(b)(i)	use of 74 to show molecular formula is $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ eg M_{r} is $(4 \times 12)+(10 \times 1)+16=74$ OR C atoms $=\frac{64.9 \times 74}{100 \times 12}=4$ H atoms $=\frac{13.5 \times 74}{100 \times 1}=10$ $O \text { atoms }=\frac{21.6 \times 74}{100 \times 16}=1$ This may be done in 2 steps eg $\text { C } \frac{64.9 \times 74}{100}=48 \frac{48}{12}=4$ All 3 correct scores 2 Any 2 correct scores 1 OR $\begin{aligned} & \% \mathrm{C}=\frac{48 \times 100}{74}=64.9 \\ & \% \mathrm{H}=\frac{10 \times 100}{74}=13.5 \\ & \% \mathrm{O}=\frac{16 \times 100}{74}=21.6 \end{aligned}$ All 3 correct scores (2) Any 2 correct scores (1)	(2)

Question Number	Acceptable Answers	Reject	Mark
2(b)(ii)	 Alcohols can be in any order ALLOW OH All FOUR correct scores Two or three correct scores ALLOW all four skeletal/structural/mixture of displayed and structural IGNORE optical isomers of butan-2-ol	molecular formula $\mathrm{OH}-\mathrm{C}$. on left of structure once only more than 1 H missing from a bond	(2)

Question Number	Acceptable Answers	Mark
2(b)(iii)	$\mathrm{CH}_{3} \mathrm{C}^{+} \mathrm{HOH} /\left[\mathrm{CH}_{3} \mathrm{CHOH}\right]^{+}$ ALLOW $\mathrm{CH}_{3} \mathrm{CHOH}^{+} /+\mathrm{CH}_{3} \mathrm{CHOH}$ $\begin{align*} & +\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} /\left[\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right]^{+} \\ & \text {ALLOW } \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}^{+} / \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{OH}^{+} \tag{1} \end{align*}$ Only penalise missing + once. Note: If no structures given, allow 1 mark for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{+}$but do not award the mark if $\mathrm{C}_{3} \mathrm{H}_{9}{ }^{+}$is given as well	(2)

Question Number	Acceptable Answers	Mark
2(b)(iv)	butan-1-ol and butan-2-ol OR structures OR identified by number from (b)(ii)	(1)

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
2(b)(v)	 ALLOW any unambiguous structures e.g. displayed, structural, skeletal or a combination of these, TE from (b)(iv)	$\mathrm{C}_{4} \mathrm{H}_{9}$ structures with more than 1 H missing from a bond	(1)

Question Number	Acceptable Answers	
$\mathbf{2 (b) (v i)}$	No structure is given or an ester formed from a different alcohol eg propanol scores (0) First mark - structure Correct structure	(5)

Question Number	Acceptable Answers	Reject	Mark
3(a)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{~N}$ ALLOW displayed formula	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$ molecular formula	1
Question Number	Acceptable Answers	Reject	Mark
3(b)	I GNORE conditions and solvents, even if incorrect Step 1 LiAlH_{4} IGNORE dry ether/ followed by $\mathrm{H}_{2} \mathrm{O}$ ALLOW lithium tetrahydridoaluminate((III)) lithium aluminium hydride Step 2 PCl_{5} ALLOW phosphorus(V) chloride/ phosphorus pentachloride $\mathrm{HCl} /($ concentrated) hydrochloric acid PCl_{3} / phosphorus(III) chloride/ phosphorus trichloride SOCl_{2} / thionyl chloride Step 4 $\mathrm{HCl} / \mathrm{HCl}(\mathrm{aq}) / \mathrm{HCl}$ in water or $\mathrm{H}_{2} \mathrm{O}$ ALLOW any strong acid/ $\mathrm{H}^{+} /$ NaOH / sodium hydroxide followed by $\mathrm{HCl} /$ hydrochloric acid Step 5 $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (and any strong acid) ALLOW ethanol	incorrect formulae, including subscripts written as large numbers or superscripts eg LiAlH4/LiAlH ${ }^{4}$ any charges NaBH_{4} H_{2} / hydrogen dilute hydrochloric acid just 'dilute acid' just 'concentrated acid' just ' $\mathrm{H}_{2} \mathrm{O}$ / water'	4

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
3(c)	$\begin{aligned} & 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \\ & 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{(-)} \mathrm{Na}^{(+)}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$ ALLOW butanoic acid as $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$ / $\begin{aligned} & \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH} / \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{H} \\ & \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH} / \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CO}_{2} \mathrm{H} \end{aligned}$ and the salt as $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$ / $\begin{align*} & \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COO}^{(-)} \mathrm{Na}^{(+)} / \\ & \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2}^{(-)} \mathrm{Na}^{(+)} / \\ & \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COO}^{(-)} \mathrm{Na}^{(+)} / \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CO}_{2}^{(-)} \mathrm{Na}^{(+)} \tag{1} \end{align*}$ all product formulae correct correct balanced equation ALLOW correct ionic equation for (1) $\begin{aligned} & 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{CO}_{3}^{2-} \rightarrow \\ & 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$ IGNORE state symbols even if incorrect		2

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
3(d)	Any two correct points from: First point butanoic acid has 4 peaks, butan-1-ol has 5 peaks OR butanoic acid has one peak fewer OR butan-1-ol has one peak more ALLOW butanoic acid has fewer peaks/ butan-1-ol has more peaks IGNORE butanoic acid has 4 proton environments and butan-1-ol has 5 Second point ratio of peak heights/ area under each peak is 3:2:2:1 for butanoic acid and 3:2:2:2:1 for butan-1-ol Third point the OH (hydrogens) have different chemical shifts OR butanoic acid has a (COOH) peak at $10-12$ (ppm) (and butan-1-ol does not) OR butan-1-ol has (an OH) peak at 2-4 (ppm) (and butanoic acid does not) Fourth point peak at 3.0-1.8 (ppm) for $\mathrm{H}-\mathrm{C}-\mathrm{C}=\mathrm{O}$ in acid and not in the alcohol OR peak at 3.0-4.4 (ppm) for $\mathrm{H}-\mathrm{C}-\mathrm{O}-$ in alcohol and not in acid OR the hydrogens on the alpha carbon have different chemical shifts I GNORE reference to splitting patterns	incorrect numbers of peaks quoted different number of peaks area under peaks in the ratio 8:10 incorrect data quoted incorrect data quoted	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (f)}$	O		
	IGNORE bond lengths and bond angles ALLOW any orientation		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
3(g)	First step - $\mathrm{PCl}_{5} /$ phosphorus(V) chloride/ phosphorus pentachloride ALLOW PCl_{3} / phosphorus(III) chloride/ phosphorus trichloride SOCl_{2} / thionyl chloride Second step - conditional on first mark $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} /$ ethanol Advantage - stand alone mark higher yield (of ester) OR reaction goes to completion/ not an equilibrium reaction/ not reversible OR no heat energy needed/ reacts at room temperature/ no (concentrated acid) catalyst needed I GNORE atom economy/ faster/ requires less energy	HCl	3

