Carboxylic Acids and Derivatives

Mark Scheme

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	Rates, Equilibria \& Further Organic Chemistry
Sub Topic	Carboxylic Acids and Derivatives
Booklet	Mark Scheme

Time Allowed:	47 minutes
Score:	$/ 39$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$	C		(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 (a)}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 (b)}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 (c)}$	B		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 a}$	Q: C=O (1750-1735 ester saturated) and R: C-O (1250-1230 ethanoate) (1)	C=O aldehyde	2
	Functional group: ester/ ethanoate		
(1)	Just O I C=O		

Question Number	Acceptable Answers	Reject	Mark
3b(i)	(\mathbf{Y} reacts with sodium carbonate to give CO_{2}) so is a (carboxylic) acid $M_{r}=60$ from mass spectrum IGNORE Fragmentation $\mathrm{CH}_{3} \mathrm{COOH}$ /ethanoic acid (1)	$\mathrm{CH}_{3} \mathrm{COOH}^{+}$	3

Question Number	Acceptable Answers	Reject	Mark
3b(ii)	(Reacts with sodium to give H_{2}) so is an alcohol and cannot be oxidized so a tertiary alcohol ALLOW No colour change with (acidified) dichromate to justify tertiary alcohol $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$ ALLOW Displayed or skeletal formula 2-methylpropan-2-ol Structural, displayed or skeletal formula shown in equation $\begin{align*} & \left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{Na} \rightarrow \quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}^{(-)} \mathrm{Na}^{(+)} \\ & +1 / 2 \mathrm{H}_{2} \\ & \mathrm{ALLOW} \\ & \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\mathrm{Na} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}^{(-)} \mathrm{Na}^{(+)}+1 / 2 \\ & \mathrm{H}_{2} \\ & \text { Multiples } \\ & \text { TE if primary or secondary alcohol } \\ & \text { given for structure } \tag{1} \end{align*}$		3

Question Number	Acceptable Answers	Reject	Mark
3b(iii)	Displayed formula of $\left(\mathrm{CH}_{3} \mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}\right)$ ALLOW Alkyl groups not fully displayed TE on primary or secondary alcohol in b(ii)		1

Question Number	Acceptable Answers	Reject	Mark
3b(iv)	No marks for this part can be awarded unless a structure is shown in either (iii) or (iv) Two peaks because there are 2 different hydrogen environments Relative area 3:1/ 9:3/1:3/3:9 (because there are 9 H in one, 3 H in the other) (1) Both singlets because there are no H atoms on adjacent C / by application of n +1 rule ALLOW TE for ester formed from ethanoic aid and butan-1-ol / butan-2-ol ONLY For butan-1-ol 5 peaks 3:2:2:2:3 Singlet, triplet, pentet/quintet, sextet, triplet by application of $\mathrm{n}+1$ rule For butan-2-ol 5 peaks 3:3:1:2:3 Singlet, doublet, sextet, pentet/quintet, triplet by application of $n+1$ rule		3

Question	Acceptable Answers					Mark
4(a)(i)						3
		$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	O_{2}	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	$\mathrm{H}_{2} \mathrm{O}$	
	$\Delta H_{f}{ }_{f}$ / kJ mol^{-1}	-126.5	0	-484.5	-285.8	
	$\begin{aligned} & \mathrm{S}^{\ominus} / \mathrm{J} \\ & \mathrm{~mol}^{-1} \\ & \mathrm{~K}^{-1} \end{aligned}$	310.1	205	159.8	69.9	
	6 values correct 3 marks4 / 5 values correct 2 marks					
	2/3 val 0/1 val	ees correct 1 m	rk rks			
	Ignore values multiplied by balancing numbers in					

Question	Acceptable Answers	Mark
$\begin{aligned} & \text { 4(a) } \\ & \text { (ii) } \end{aligned}$	If answer is - 2256.6 / - 2257 ($_{\text {kJ mol }}{ }^{-1}$), award 2 marks $\begin{align*} & {[(2 x-285.8)+(4 x-484.5)]} \\ & -(2 x-126.5) \tag{1} \end{align*}$ $\begin{equation*} =-2256.6 /-2257\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$ Allow answer converted to $\mathrm{J} \mathrm{mol}^{-1}$ Allow TE from incorrect data in table in (a)(i) Allow (1) for cycle wrong way round eg (+) $2256.6 /(+) 2257\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Allow (1) for using correct values but not multiplied by balancing numbers eg $-643.8\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Ignore SF except 1SF	2

Question Number	Acceptable Answers	Mark
4(a) (iii)	If answer is $\mathbf{- 8 6 6 . 2}\left(\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$, award 2 marks $\begin{align*} & {[(2 \times 69.9)+(4 \times 159.8)]-} \\ & \quad[(2 \times 310.1)+(5 \times 205)] \tag{1}\\ & -866.2\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \tag{1} \end{align*}$ Allow answer converted to $\mathrm{kJ} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ Allow TE from incorrect data in table in (a)(i) Allow (1) for cycle wrong way round eg (+) $866.2\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ Allow (1) for using correct values but error(s) in balancing numbers eg -285.4 ($\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$) Ignore SF except 1SF	2

Question Number	Acceptable Answers	Mark
$\begin{aligned} & \text { 4(a) } \\ & \text { (iv) } \end{aligned}$	If answer is (+)6706.3 $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ or (+)6.7063 $\mathrm{kJ} \mathrm{mol}{ }^{-1} \mathrm{~K}^{-1}$, award 3 marks $\begin{align*} & \Delta \mathrm{S}_{\text {surr }} \text { at } 298 \mathrm{~K}=-\Delta \mathrm{H} / \mathrm{T} \\ & =-(-2256.6 \times 1000) / 298 \tag{1}\\ & =7572.483 \ldots\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \tag{1} \end{align*}$ Allow rounding to 3SF or more Allow correct answers given in $\mathrm{kJ} \mathrm{mol}^{-1} \mathrm{~K}^{-1} \mathrm{eg} 7.5725$ $\mathrm{kJ} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ $\begin{align*} & \Delta \mathrm{S}_{\text {tot }}=\Delta \mathrm{S}_{\text {surr }}+\Delta \mathrm{S}_{\text {sys }} / \Delta \mathrm{S}_{\text {tot }}=-866.2+7572.5 / \Delta \mathrm{S}_{\text {tot }}= \\ & (+) 6706.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & \mathbf{O R} \\ & -0.8662+7.5725 / \\ & \Delta \mathrm{S}_{\text {tot }}=(+) 6.7063 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \tag{1} \end{align*}$ Allow TE from (a)(ii) and (a)(iii) Ignore SF except 1SF in final answer	3

www.igexams.com

Question Number	Acceptable Answers	Mark
4(a)(v)	1st mark: consideration of $\Delta S_{\text {system }}$ $\Delta \mathrm{S}_{\text {sys }}$ is not (significantly) changed /is unchanged /remains (approximately) constant 2nd mark: consideration of $\Delta S_{\text {surr }}$ (Higher temperature makes) $\Delta \mathrm{S}_{\text {surr }} /-\Delta \mathrm{H} / \mathrm{T}$ is smaller / decreases / less positive Comment Allow more negative No TE if $\Delta \mathrm{S}_{\text {surr }}$ is -ve in (a)(iv) 3rd mark: consideration of $\boldsymbol{\Delta} \mathrm{S}_{\text {total }}$ EITHER reduces $\Delta \mathrm{S}_{\text {tot }} /$ makes $\Delta \mathrm{S}_{\text {tot }}$ less positive / makes $\Delta \mathrm{S}_{\text {tot }}$ closer to zero (so would not produce a greater yield) OR $\Delta \mathrm{S}_{\text {tot }}$ is very large (so K is very large) so the effect of change in temperature is negligible NOTE if $\Delta \mathrm{S}_{\text {surr }}$ is -ve in (iv), then allow increases $\Delta \mathrm{S}_{\text {tot }} /$ makes $\Delta \mathrm{S}_{\text {tot }}$ more positive / makes $\Delta \mathrm{S}_{\text {tot }}$ closer to zero (so would produce a greater yield). NOTE IF no reference / an incorrect reference made to $\Delta \mathrm{S}_{\text {system, }}$, then only the 2nd and 3rd marks can be awarded	3

www.igexams.com

Question Number	Acceptable Answers	Mark
4(b)	Note: All we are looking for are the correct ranges, exactly as given below (i.e. the bonds do not have to be stated, as they follow from the correct ranges)	$\mathbf{1}$
	Peak between 1725 - 1700 $\left(\mathrm{cm}^{-1}\right)$ (would appear due to C=O group (in alkyl carboxylic acid)) Allow peak between 3300 - 2500 (cm^{-1}) (due to OH group (in carboxylic acid))	

Question Number	Acceptable Answers	Mark
4(c)	increase sourness / sharpness of flavour OR preservative / prevents growth of microbes / prevents food decay / prevents food decomposition /kills microbes OR acidity regulator / buffer Allow improves flavouring Ignore reduce pH/ make (slightly) acidic/just 'flavouring'	$\mathbf{1}$

Question	Acceptable Answers		Mark
4(d)(i)	Working must be shown		3
	EITHER		
	\% of oxygen $=40 \%$	(1)	
	Amount of $\mathrm{C}=52.5 / 12=4.375(\mathrm{~mol})$ Amount of $\mathrm{H}=7.5 / 1=7.5(\mathrm{~mol})$		
	$\begin{aligned} & \text { Ratio } 1.75 \mathrm{C}: 3 \mathrm{H}: 1 \mathrm{O} \\ & \equiv 7 \mathrm{C}: 12 \mathrm{H}: 4 \mathrm{O} \end{aligned}$		
	Ignore SF in mol and ratios	(1)	
	OR		
	$\%$ of C in $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{4}=\frac{84}{160} \times 100=52.5 \%$	(1)	
	$\%$ of H in $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{4}=\frac{12}{160} \times 100=7.5 \%$	(1)	
	$\%$ of O in $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{4}=\frac{64}{160} \times 100=40 \%$	(1)	
	OR		
	No C atoms $=\frac{52.5 \times 160}{100 \times 12}=7$	(1)	
	No H atoms $=\underline{7.5 \times 160}=12$	(1)	
	100×1		
	No O atoms $=\frac{40 \times 160}{100 \times 16}=4$	(1)	

Question Number	Acceptable Answers	Reject	Mark
4(d) (ii)	Largest/highest m/e or m / z value (is 160) OR Mass (/charge ratio) or m / e or m / z of molecular/parent ion/ $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{4}{ }^{+}$ $\left(=160\left(=\mathrm{M}_{\mathrm{r}}\right)\right.$)	Highest peak	1
Allow last peak / peak on rhs (is at 160) Allow peak before last (is at 160 due to is a peak at 160 '			
M+1 peak at 161$)$			

Question	Acceptable Answers				Mark
4(For 'chemical shift' column, allow any range or any single value within range and allow range in the opposite order eg 3.0-1.8				4
	Feature of compound X	Chemical shift / ppm for TMS	Splitting patterns	Relativ e area below peak	
	CH_{3}	0.1-1.9	doublet	3 (1)	
	CH	$\begin{aligned} & 1.8-3.0 \\ & (1) \end{aligned}$	septuplet / heptuplet / splits into 7 / 7 splits (1)	1	
	COOH	$\begin{aligned} & 10-12.0 \\ & (1) \end{aligned}$	singlet	1	
	Allow heptet / septet /sevenlet and similar words that indicate 7				

Total for Question 4 = 23 marks

