## Chirality

## Mark Scheme 1

| Level | International A Level |
| :--- | :--- |
| Subject | Chemistry |
| Exam Board | Edexcel |
| Topic | Rates, Equilibria \& Further Organic Chemistry |
| Sub Topic | Chirality |
| Booklet | Mark Scheme 1 |


| Time Allowed: | 71 minutes |
| :--- | :---: |
| Score: | $/ 59$ |
| Percentage: | $/ 100$ |

Grade Boundaries:

| A* | A | B | C | D | E | U |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $>85 \%$ | $77.5 \%$ | $70 \%$ | $62.5 \%$ | $57.5 \%$ | $45 \%$ | $<45 \%$ |

## www.igexams.com

| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 ( a )}$ | C | 1 |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 ( b )}$ | A | 1 |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 ( c )}$ | D | 1 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 2a | Heptan-2-one | Heptanone | 1 |
| ALLOW <br> Hept-2-one <br> Hepta-2-one <br> Heptane-2-one <br> 2-heptanone |  |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 b}$ | (Warm with) iodine and sodium <br> hydroxide/ iodine in the presence of <br> alkali <br> ElTHER <br> Yellow and precipitate with A only <br> OR <br> Yellow and precipitate with A, no <br> change with B <br> ALLOW <br> Antiseptic smell with A only <br> ALLOW <br> Correct result following use of just <br> iodoform test' for second mark | (1) | Measure the <br> melting point of <br> the hydrazone |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 2c | Test 2 may be given before test 1 <br> Allow a correct result with a nearly correct test eg no acid in dichromate test scores 0 for test but scores 1 for the result remains orange <br> Test 1: (Warm with) Brady's reagent / ( 2,4 - ) dinitrophenylhydrazine / ( 2,4 ) DNP(H) <br> Yellow/ orange/ red <br> and precipitate/ solid/ crystals <br> and confirms $\mathrm{C}=\mathrm{O}$ / carbonyl/ aldehyde or <br> ketone <br> Test 2: Any one from (Warm/boil with) Fehling's solution/ Benedict's solution <br> No red-brown/ brown/ orange ppt / stays blue, confirms not an aldehyde <br> ALLOW <br> No reaction confirms not an aldehyde/ so it is a ketone <br> OR <br> Test 2: (Warm with) Tollens' reagent/ ammoniacal silver nitrate <br> No silver mirror/ grey black or silver ppt confirms not an aldehyde <br> ALLOW <br> No reaction confirms not an aldehyde/ so it is a ketone <br> OR <br> (Warm with) potassium/sodium <br> dichromate( $(\mathrm{VI})$ ) and sulfuric acid/ $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ <br> and $\mathrm{H}^{+}$ <br> ALLOW <br> (Warm with) acidified (potassium/ sodium) <br> dichromate((VI)) <br> remains orange / does not go green confirms not an aldehyde <br> ALLOW <br> No reaction confirms not an aldehyde/ so it <br> is a ketone |  | 4 |


|  | Additional Comments <br> READ (b) and (c) TOGETHER <br> DNPH test in (b) scores 0 but if DNPH test is given correctly in (b) allow up to 2 marks for this test in in (c) | st is s for |  |
| :---: | :---: | :---: | :---: |
| Question Number | Acceptable Answers | Reject | Mark |
| 2d |  <br> OR <br> $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH})\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3} /$ <br> $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ <br> Lithium tetrahydridoaluminate((III))/ <br> lithium aluminium hydride / <br> $\mathrm{LiAlH}_{4}$ (in dry ether) <br> ALLOW <br> $\mathrm{NaBH}_{4}$ / sodium borohydride <br> $\mathrm{H}_{2}+\mathrm{Ni} / \mathrm{Pt} / \mathrm{Pd}$ catalyst | Skeletal formula Lack of hydrogens | 2 |



## www.igexams.com

| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 e ( i i )}$ | Forms a racemic mixture / (1) <br> racemate <br> Cyanide can attack (equally) from <br> either side/ above or below (1) <br> Because bonds round C=O are | Ketone/ the <br> (trigonal) planar / <br> molecule is planar <br> C=O is planar <br> / | C=O is planar <br> OR <br> Carbonyl group / C=O group / <br> reaction site is planar <br> OR <br> Bonds around carbonyl carbon are <br> planar |

## www.igexams.com

| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| 3(a) | ethyl dodecanoate | Allow <br> ethyldodecanoate <br> decanoate / <br> ethyl <br> dodecanal/ <br> ethyl <br> dodecate / <br> ethanoyl <br> dodecanoate | $\mathbf{1}$ |


| Question <br> Number | Acceptable Answers | Mark |
| :--- | :--- | :---: |
| $\mathbf{3 ( b )}$ | Reducing (agent) | $\mathbf{1}$ |
|  | Allow <br> (source of) nucleophile <br> Ignore source of hydride ions |  |


| Question <br> Number | Acceptable Answers | Mark |
| :--- | :--- | :---: |
| 3(c) | Prevent further reduction / reduction of the aldehyde <br> (to an alcohol) <br> Allow to prevent further reaction of dodecanal <br> /aldehyde <br> Ignore reference to rates <br> Ignore higher yield/ prevent side reactions <br> Ignore exothermic / optimum temperature <br> Ignore volatility | $\mathbf{1}$ |

## www.igexams.com

| Question Number | Acceptable Answers | Mark |
| :---: | :---: | :---: |
| 3(d) | If final answer is 3.74 (g), with or without working, award 3 marks <br> Moles ester $=5.26 / 228=0.02307 \mathrm{~mol}$ <br> NOTE: Do not allow this rounded to 0.02 <br> EITHER <br> So mass of aldehyde at 100\% $\begin{align*} & =0.02307 \times 184 \\ & =4.2449(\mathrm{~g}) \tag{1} \end{align*}$ <br> But yield is $88 \%$, so actual mass $\begin{align*} & =4.245 \times 0.88 \\ & =3.7355 / 3.74(\mathrm{~g}) \tag{1} \end{align*}$ <br> Allow 3.73 g if 4.24 g of aldehyde used <br> OR <br> But yield is $88 \%$, so actual moles $\begin{align*} & =0.02307 \times 0.88 \\ & =0.02(03) \tag{1} \end{align*}$ <br> So mass of aldehyde formed $\begin{align*} & =0.0203 \times 184 \\ & =3.7355 / 3.74 / 3.7(\mathrm{~g}) \tag{1} \end{align*}$ <br> Allow TE for $2^{\text {nd }}$ and $3^{\text {rd }}$ marks <br> Ignore SF in final answer except 1SF | 3 |

Total for Question 3 = 6 marks

## www.igexams.com

| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 4(a) | First mark <br> mix/add the reagents and filter <br> OR <br> react butanone/ketone with Brady's reagent/2,4-dinitrophenylhydrazine and filter <br> OR <br> filter the (yellow/orange) precipitate <br> formed <br> Second mark <br> recrystallize <br> OR <br> description of recrystallization <br> ALLOW this mark even if the ppt is not <br> filtered <br> Third mark <br> measure the melting temperature (of derivative of butanone) and compare with data book /reference / literature value <br> Stand alone marks | Just <br> 'crystallisation' if the precipitate has not been filtered <br> Just 'characteristic melting temperature' | (3) |
| Question Number | Acceptable Answers | Reject | Mark |
| 4(b)(i) | nucleophilic <br> addition <br> answers can be in any order <br> I GNORE heterolytic | hydrolysis/ reduction $S_{N} 1$ or $S_{N} 2$ | (2) |

## www.igexams.com

| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 4(b)(ii) | Method 1 acid hydrolysis <br> Name or formula of any strong acid <br> eg (dilute) hydrochloric acid/ (dilute) <br> sulfuric acid <br> I GNORE dilute acid / $\mathrm{H}^{+}($aq)/ <br> just 'H ${ }^{+\prime}$ | Just 'concentrated <br> sulfuric acid' <br> Potassium <br> dichromate(VI) and <br> dilute sulfuric acid | (2) |
| Boil/heat /reflux <br> Conditional on acid as the only <br> reagent <br> ALLOW high temperature <br> Method 2 alkaline hydrolysis (1) <br> Sodium hydroxide solution/ dilute <br> sodium hydroxide/ NaOH(aq) and <br> boil/heat /reflux <br> then add dilute acid / $\mathrm{H}^{+}($aq)/dilute <br> hydrochloric acid/ dilute sulfuric acid <br> (1) | Just 'warm' |  |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 4(b)(iii) | First mark <br> both curly arrows on the first diagram arrow from C of $\mathrm{CN}^{-}$to C of carbonyl and arrow from double bond to O <br> ALLOW curly arrow from the - sign but not from the N <br> I GNORE correct dipoles <br> Second mark <br> lone pair on C of $\mathrm{CN}^{-}$correct <br> I GNORE other lone pairs, even if incorrect <br> Third mark <br> both curly arrows on the third diagram arrow from O to H and from bond to C of CN ALLOW curly arrow to gap between C and N | full charges on C / O incorrect dipole on $\mathrm{C}=\mathrm{O}$ <br> arrow <br> directly to N of CN | (3) |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 4(c) |  <br> OR <br> ALLOW any combination of displayed structure/ structural formula /skeletal formulae <br> ester group correct <br> ALLOW -COOC- <br> rest of polymer correct <br> ALLOW $\mathrm{C}_{2} \mathrm{H}_{5}$ <br> ALLOW more than 2 repeat units Conditional on ester group correct (1) <br> I GNORE <br> n and square brackets |  <br> in polymer scores (0) <br> more than 1 H missing from a bond | (2) |


| Question Number | Acceptable Answers | Mark |
| :---: | :---: | :---: |
| 5(a)(i) | Penalise lack of + sign once only in (a)(i) or (ii) in each final answer <br> IGNORE sf in (a)(i), (ii), and (iii) in each final answer, except 1 sf <br> FI RST, CHECK THE FI NAL ANSWER <br> $+479.7 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ scores 3 marks <br> $479.7 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ scores 2 marks (+ sign missing) <br> +479.7/479.7 scores 2 marks (units and/or + missing) <br> $+1709.7 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ scores $\mathbf{2}$ marks - multiple of 12 used for oxygen <br> $1709.7 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} /+1709.7 / 1709.7$ score $\mathbf{1}$ mark - multiple of 12 used for oxygen and positive sign and/or units <br> If these answers are not given, award marks as follows: <br> First mark <br> correct data for $\mathrm{CO}_{2}$ (213.6) and $\mathrm{H}_{2} \mathrm{O}$ (69.9) <br> Second mark <br> correct multiples (12, 11, 1 and 24) and Hess's Law applied $\begin{align*} \Delta \mathrm{S}_{\text {system }}= & 12 \times 213.6+11 \times 69.9 \\ & -(392.4+24 \times 102.5) \tag{1} \end{align*}$ <br> ALLOW ecf from incorrect data for $\mathrm{CO}_{2}$ and/or $\mathrm{H}_{2} \mathrm{O}$ <br> Third mark <br> correct answer with sign and units $=+479.7 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ <br> ALLOW ecf from incorrect data for $\mathrm{CO}_{2}$ and/or $\mathrm{H}_{2} \mathrm{O}$ and incorrect multiples | 3 |


| Question Number | Acceptable Answers |  | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 5(a)(ii) | $\begin{aligned} & \text { If answer is } \mathbf{+ 1 8 9 2 5 . 2} \mathbf{~ J ~ m o l}^{-1} \mathbf{K}^{-1} / \\ & \mathbf{+ 1 8 . 9 2 5 2} \mathbf{~ k J ~} \mathbf{~ m o l}^{-1} \mathbf{K}^{-1} \text {, then award } \mathbf{2} \text { marks } \\ & \text { If not, } \\ & \begin{aligned} \Delta \mathrm{S}_{\text {surroundings }}^{\ominus}= & \frac{-\Delta \mathrm{H}^{\ominus}}{\mathrm{T}} \\ = & -\frac{(-5639.7) \times 1000}{298} \\ = & +18925.2 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} / \\ & +18.9252 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{aligned} \end{aligned}$ | (1) <br> (1) | $\begin{aligned} & +18925.1 \\ & \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & +18.9251 \\ & \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{aligned}$ | 2 |

## www.igexams.com

| Question Number | Acceptable Answers | Mark |
| :---: | :---: | :---: |
| 5(a)(iii) | First mark $\begin{aligned} \left(\Delta \mathrm{S}_{\text {total }}^{\ominus}\right. & \left.=\Delta \mathrm{S}_{\text {surroundings }+}^{\ominus} \Delta \mathrm{S}_{\text {system }}^{\ominus}=18925.2+479.7\right) \\ & =(+) 19404.9\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) /(+) 19.4049\left(\mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \end{aligned}$ <br> if units given they must be correct <br> ALLOW $(+) 19500\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) /(+) 19.5\left(\mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(\text { from } 19.0+0.480)$ <br> ALLOW <br> ecf on adding answers to (a)(i) and (a)(ii) in the same units <br> (1) <br> Note <br> If answer to (a)(i) was +1709.7, $\Delta \mathrm{S}_{\text {total }}=+20634.9\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) /+20.6349\left(\mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ <br> Second mark <br> ( $\Delta \mathrm{S}_{\text {total }}^{\ominus}$ is positive so) reaction is (thermodynamically) spontaneous/ feasible/ goes to completion <br> ALLOW thermodynamically unstable <br> If their sign for $\Delta S^{\ominus}{ }_{\text {total }}$ is negative, then ALLOW reaction is not spontaneous/ not feasible/ does not go to completion |  |

## www.igexams.com

| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 5(a)(iv) | I GNORE comments on $\Delta \mathrm{S}^{\ominus}{ }_{\text {system }}$ <br> First mark <br> ( $\Delta \mathrm{S}_{\text {surroundings }}^{\ominus}=-\Delta \mathrm{H}^{\ominus} / T$ so increase in $T$ makes) <br> $\Delta S^{\ominus}{ }_{\text {surroundings }}$ less positive/ decreases <br> ALLOW more negative <br> Second mark <br> ( $\Delta \mathrm{S}^{\ominus}{ }_{\text {total }}=\Delta \mathrm{S}_{\text {surroundings }}+\Delta \mathrm{S}_{\text {system }}{ }^{\text {so }}$ increase in $T$ makes ) <br> $\Delta \mathrm{S}^{\ominus}{ }_{\text {total }}$ less positive/ decreases <br> ALLOW more negative <br> NOTE no ecf on $\Delta S^{\ominus}{ }_{\text {surroundings }}$ increases <br> Third mark <br> (because $\Delta \mathrm{S}^{\ominus}$ total is so large and positive to start with) there is an insignificant effect on the extent of the reaction <br> ALLOW <br> $\Delta \mathrm{S}^{\ominus}$ total is still positive so reaction still goes to completion/is spontaneous <br> ALLOW ecf on $\Delta \mathrm{S}_{\text {total }}^{\ominus}$ increases | more exothermic |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{5 ( a ) ( v )}$ | First mark <br> (stable because) high activation energy/ Ea (for combustion <br> of sucrose) <br> ALLOW sucrose is kinetically stable/ inert <br> Second mark <br> (hazardous because small particles/ powder have/ has) <br> larger surface area and react faster | (1) |  |$\quad$| IGNORE any reference to temperature |
| :--- |
| If answers are not linked to stability and hazardous, still <br> award both marks even if the points are written in the <br> wrong order |

## www.igexams.com

| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 5(a)(vi) | Any two of: <br> obesity/ weight gain/ stored as fat/ get fat <br> tooth decay/ cavities/ toothache <br> diabetes/ glycosuria <br> heart/ cardiovascular condition/ disease/ attack (1) <br> strokes <br> damage to the immune system <br> high insulin levels <br> high blood pressure <br> kidney damage <br> liver disease <br> headaches/ migraines <br> arthritis <br> high cholesterol <br> I GNORE <br> risk of cancer/ high blood sugar/ stomach ulcers |  | 2 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 5(b)(i) | circles or asterisks on carbons 2-5 <br> all four correct <br> 3 or 2 correct <br> (1) <br> 1 or 0 correct <br> (0) <br> ALLOW 5 carbons circled | all 6 carbons circled (0) | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{5 ( b ) ( i i )}$ | rotate the plane of (plane-) polarized light | just 'rotate light' |  |
|  | ALLOW rotate plane-polarized light <br> IGNORE optically active/ optical activity/ non- <br> superimposable |  | $\mathbf{1}$ |

## www.igexams.com

| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 5(b) (iii) | First mark - colour change <br> from a blue (solution) to a <br> red/ orange/ brown/ yellow precipitate <br> ALLOW <br> solid or (s) for precipitate which could be shown in formula or equation <br> Second mark - functional group <br> (glucose/it is) an aldehyde / (has) a CHO group <br> Third mark - oxidation/ reduction <br> copper(II)/Cu ${ }^{2+}$ is reduced (to copper(I)/Cu ${ }^{+}$ oxide by the aldehyde group) $/ \mathrm{Cu}^{2+}+\mathrm{e}^{(-)} \rightarrow \mathrm{Cu}^{+}$ <br> OR <br> the aldehyde/ glucose is oxidized (to the carboxylate/carboxylic acid)/ $\mathrm{RCHO}+[\mathrm{O}] \rightarrow \mathrm{RCOOH}$ <br> OR <br> Benedict's and Fehling's (solutions) are oxidizing agents <br> ALLOW <br> equation showing oxidation of aldehyde and reduction of $\mathrm{Cu}^{2+}$ even if not balanced | incorrect observation for one of the reagents for first mark only, eg. silver mirror formed |  |

