Equilibria

Mark Scheme 1

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	Rates, Equilibria & Further Organic Chemistry
Sub Topic	Equilibria
Booklet	Mark Scheme 1

Time Allowed: 52 minutes

Score: /43

Percentage: /100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question Number	Correct Answer	Rej	ect	Mark
1	В			1
				<u> </u>
Question Number	Correct Answer		Mark	
2	A			
	•	,		
Question Number	Correct Answer		Mark	
3(a)	D			
Question Number	Correct Answer		Mark	
3(b)	С			
Question Number	Correct Answer		Mark	
3(c)	A			
Question Number	Correct Answer		Mark	
4(a)	В			
Question Number	Correct Answer		Mark	
4(b)	Α			
Question Number	Correct Answer		Mark	
4(c)	В			
Question Number	Correct Answer	Re	ject	Mark
5	В			(1)
Question Number	Correct Answer	Re	ject	Mark
6	С			(1)
Question Number	Correct Answer	Re	eject	Mark
7	D			1

Question Number	Acceptable Answers	Reject	Mark
8 a	Proton/ H ⁺ donor		1

Question Number	Acceptable Answers	Reject	Mark
8 b	pH of HCl = 1 and pH of weak acid is greater /higher than 1 Allow any number >1 and <7	Different (from 1)	1

Question Number	Acceptable Answers		Reject	Mark
8c(i)	HCOOH/ methanoic acid because its K_a is bigger/ OR its p K_a is smaller / low (The data: K_a Methanoic acid 1.6 x 10 Propanoic acid 1.3 x 10 IGNORE Discussion of inductive effects	pK _a pK _a 3.8 p ⁻⁵ 4.9)		1

Question	Acceptable Answers	Reject	Mark
Number			
8 c(ii)	(HCOOH + C_2H_5COOH) \rightleftharpoons HCOO ⁻ + $C_2H_5COOH_2$ ⁺	COOH ⁻ C ₂ H ₆ COOH ⁺	1
	ALLOW TE for equation with propanoic acid as proton donor giving HCOOH ₂ ⁺ and C ₂ H ₅ COO ⁻ if HCOOH is stated to be weaker		

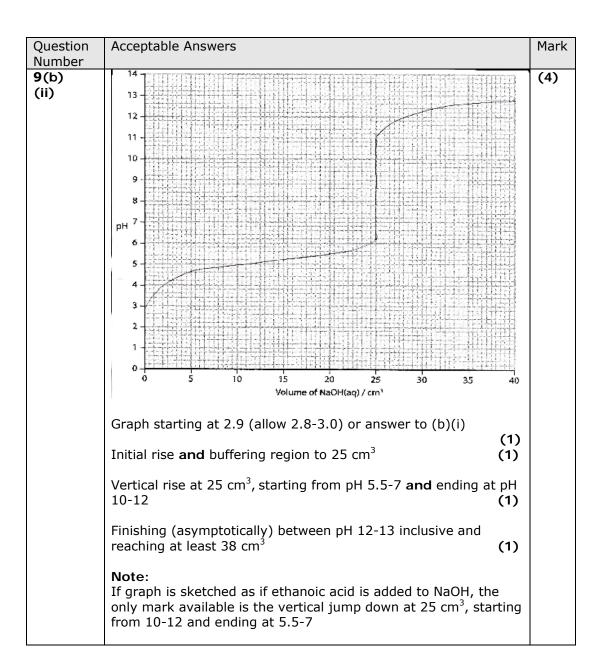
Question Number	Acceptable Answers		Reject	Mark
8 d	$[H^{+}] = (1 \times 10^{-14} / [OH^{-}])$ = 2 x 10 ⁻¹³ (mol dm ⁻³)	(1)		2
	pH = 12.7	(1)	13	
	OR			
	pOH / -log 0.05 = 1.3	(1)		
	pH = (14 -1.3 =) 12.7	(1)	13	
	Correct answer with no working score provided at least 3 SF Allow TE on first mark provided answer			

Question Number	Acceptable Answers	Reject	Mark
8 e(i)	$C_2H_5COOH + NaOH \rightarrow C_2H_5COO^{(-)}Na^{(+)} + H_2O$		1
	ALLOW \rightleftharpoons for \rightarrow $C_2H_5COO^- + Na^+$ for $C_2H_5COO^{(-)}Na^{(+)}$		
	IGNORE State symbols even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
8e(ii)	Allow salt/ C ₂ H ₅ COONa/ propanoate ion/ C ₂ H ₅ COO ⁻ / base for A ⁻		5
	Allow propanoic acid/ C ₂ H ₅ COOH for HA		
	First mark		
	$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$ OR $\log K_{a} = \log[H^{+}] + \log [A^{-}]/[HA]$		
	OR pH = p K_a - log [HA]/[A ⁻]		
	ALLOW any of these equations re-arranged or used correctly (1)		
	Next four marks		
	Mol NaOH before mixing = $(20 \times 0.05/1000) = 0.001$ and mol propanoic acid before mixing = $(20 \times 0.25/1000) = 0.005$ (1)		
	Mol propanoate in mixture = 0.001 OR [propanoate] = $(0.001/40 \times 1000)$ = $0.025 \text{ (mol dm}^{-3}\text{)}$ (1)		
	Mol propanoic acid in mixture = 0.004 OR [propanoic acid] = $(0.004/40 \times 1000)$ = $0.1 \text{(mol dm}^{-3}\text{)}$ (1)		
	$[H^+] = (1.3 \times 10^{-5})(0.1)$		
	0.025		
	pH = 4.28/ 4.3 (1)		
	Correct pH with no working scores last 4 marks		
	ALLOW		
	Other methods leading to 4.28 e.g. based on equal volumes being mixed so mol propanoate are in double the volume and so concentration is 0.025 mol dm ⁻³		

Question Number	Acceptable Answers	Reject	Mark
8e(iii)	First mark The mixture contains a large amount/ reservoir of a (weak) acid/propanoic acid and its conjugate base/ propanoate ions /salt (1)		3
	Second mark Only awarded if at least one equation given		
	Added OH ⁻ combines with H ⁺ (H ⁺ + OH ⁻ \rightarrow H ₂ O) from propanoic acid		
	followed by dissociation of more propanoic acid		
	$C_2H_5COOH \rightleftharpoons C_2H_5COO^- + H^+$		
	OR Added OH combines with propanoic acid		
	$\begin{array}{c} OH^- + C_2H_5COOH \rightarrow C_2H_5COO^- + \\ H_2O \end{array} $ (1)		
	Third mark (pH is unchanged because added OH— is removed) change in concentration of C ₂ H ₅ COO— and C ₂ H ₅ COOH is small / ratio [salt]/[acid] hardly		
	changes (1)		

(Total for Question 8 = 15 marks)


Question Number	Acceptable Answers	Reject	Mark
_	Acceptable Answers AL OW answers written on either set of dotted lines Weak: dissociates/ionizes to a small extent / partially /incompletely ALLOW does not ionise completely (1) Acid: proton donor ALLOW produces/forms / releases H+ ions / H ₃ O+ ions / oxonium ions / hydroxonium ions / hydroxonium ions / hydroxonium ions / hydronium ions	'not easily dissociated' / few H ⁺ ions	(2)
	IGNORE just 'accepts electrons'		
	IGNORE contains H ⁺ ions		
	IGNORE reference to typical acid reactions		

Question Number	Acceptable Answers	Reject	Mark
9(a)(ii)	$(K_a =) [CHCl_2COO^-][H^+]$ $[CHCl_2COOH]$	No /round brackets	(1)
	OR [H_3O^+] for [H^+]		
	ALLOW [CHCl ₂ CO ₂ ⁻] / [CHCl ₂ CO ₂ H]		
	$\textbf{IGNORE}\ [\]_{\text{eq}}$ and state symbols, even if incorrect		

Question Number	Acceptable Answers	Mark
9(a)(iii)	weakest ethanoic acid chloroethanoic acid dichloroethanoic acid strongest trichloroethanoic acid OR correct formulae	(2)
	all four correct (1)	

Question Number	Acceptable Answers		Reject	Mark
9(b)(i)	FIRST CHECK THE FINAL ANSWER, IF answer pH = 2.88/2.9, award 2 marks IF pH = 2.89, decide which route has been follo and award 1 mark for routes 1 and 2 (rounding error) and 3 marks for route 3			(4)
	IF answer is not correct, award the following marks: Route 1 [H ⁺] = $\sqrt{K_a}$ x [CH ₃ COOH] = $\sqrt{1.7}$ x 10^{-5} x 0.1 = 1.3038 x 10^{-3} (mol dm ⁻³)	(1)		
	pH = 2.8848 consequential on their [H ⁺], provided pH is less than 7 Route 2 [H ⁺] = $\sqrt{K_a}$ x [CH ₃ COOH] pH = $\frac{1}{2}$ pKa - $\frac{1}{2}$ log[CH ₃ COOH]	(1)(1)		
	= 2.88 consequential on their expression for pH	(1)		

Assumption 1 [H ⁺] = [CH ₃ COO ⁻] OR no H ⁺ from the (ionization of) water OR H ⁺ all comes from the acid Assumption 2 Ionization of the (weak) acid is negligible / versmall / insignificant OR [CH ₃ COOH] _{initial} = [CH ₃ COOH] _{eqm} OR [CH ₃ COOH] _{eqm} = 0.1 mol dm ⁻³ OR [CH ₃ COOH] remains constant Route 3 using [CH ₃ COOH] _{eqm} = 0.1 - [H ⁺]	(1)	'no dissociati on' OR 'partial'/' incomple te' dissociati on	
Using $[CH_3COOH]_{eqm} = 0.1 - [H]$ $[H^+] = 1.2954 \times 10^{-3} \text{ (mol dm}^{-3}\text{)}$	(1)		
[11]= 1.2954 × 10 (11101 d111)			
pH = 2.8876 Assumption [H ⁺] = [CH ₃ COO ⁻] OR no H ⁺ from the (ionization of) water OR	(1)		
H ⁺ all comes from the acid ALLOW [HA]/[HX]/[acid]/[A ⁻]/[X ⁻]/[base] for formulae of acid and base	(1)		

Question Number	Acceptable Answers	Reject	Mark
9(b)(iii)	any correct indicator that has the complete pH range within the vertical jump on their titration curve Note: expected indicators numbers 14 to 17 from Data Booklet ie phenol red (6.8-8.4) thymol blue ((base)) (8.0-9.6) phenolphthalein (8.2-10.0) thymolphthalein (8.3-10.6) ALLOW bromothymol blue (6.0-7.6) if their vertical range starts at or below 6.0 (1)	If no titration curve (0) litmus/azolitmin universal indicator	(2)
	Justification – conditional on a correct indicator pH range (of indicator) lies (completely) within the vertical jump (on the titration curve) OR indicator will change colour in the vertical section of the graph OR pH range of indicator and pH range of vertical section of the graph stated as long as they overlap ALLOW pKin (±1) is in the mid-point of the vertical jump ALLOW pKin is nearest to the pH at the end/equivalence point ALLOW indicator will change colour at the end/equivalence point IGNORE (because it is a) titration of a weak acid with strong alkali		

Question Number	Acceptable Answers	Reject	Mark
9 (c)	$(CH_3COOH + CCI_3COOH \rightarrow)$ base (2) acid (1)		(2)
	CH ₃ COOH ₂ ⁺ + CCl ₃ COO ⁻ conjugate acid co ugate base / acid 2 /base 2	HCH₃COOH ⁺ for first mark only	
	First marking point both formulae correct (1)		
	Second marking point both conjugate acid-base pairs correctly identified (1)	Just 'acid' and 'base' with no link	
	ALLOW any indication of the correct pairs they may be linked together eg lines or arrows, provided they have been labelled correctly as acid or base		
	Note: If equation is		
	CH ₃ COOH + CCl ₃ COOH \rightarrow) acid (2) base (1)		
	CH ₃ COO ⁻ + CCl ₃ COOH ₂ ⁺ conjugate base conjugate acid / base 2 /acid 2 ALLOW 1 mark for the consequential acid/base pairs		

(Total for Question 9 = 17 marks)