Equilibria Mark Scheme 2

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Торіс	Rates, Equilibria & Further Organic Chemistry
Sub Topic	Equilibria
Booklet	Mark Scheme 2

Time Allowed:	66 minutes
Score:	/55
Percentage:	/100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Questio	Acceptable Answers	Reject	Mark
n Number			
1(a)	1 st mark: Identification of buffer		3
(i)			
	Any mention of buffer solution / buffering	Acidic	
	(region) (1)	buffer	
	2 nd mark: Identification of species responsible for buffering action		
	ammonia/NH ₃ and ammonium ions /NH ₄ ⁺ present (in significant concentrations) OR		
	ammonia/NH ₃ and ammonium chloride /NH ₄ Cl present (in significant concentrations)	Weak acid	
	weak base and salt/conjugate acid present (in significant concentrations)	and its conjugate	
	B and BH ⁺ present (in significant concentrations)	HA and A ⁻	
	Can be awarded from a correct equation (1)		
	3 rd mark: For mention of how this buffer works on addition of small amounts of H ⁺ ions		
	(relatively large concentration/reservoir of) ammonia molecules react with added hydrogen ions/ H ⁺ /(hydrochloric) acid OR		
	(relatively large concentration /reservoir of weak) base reacts with added hydrogen ions / H ⁺ /(hydrochloric) acid		
	I H ⁺ + NH₃→NH₄ ⁺		
	Allow reversible arrow		
	OR		
	has negligible effect on ratio [NH2] (NH2+1)		
	(1)		
	Ignore references to buffering action on addition of OH ⁻ (not relevant here)		
	Ignore general descriptions of buffer solution eg resists change in pH when small amounts of acid or alkali added		

Question Number	Acceptable Answers	Mark
1(a) (ii)	Note – the equations $NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$ $NH_4^+ + H_2O \rightarrow NH_4OH + H^+$ score all three marks	3
	Note –the equation NH ₄ ⁺ \rightarrow NH ₃ + H ⁺ scores 2 marks, but if (aq) state symbols are given, scores 3 marks	
	1 st mark: Ammonium ions /NH4 ⁺ present (at equivalence point) OR	
	ammonium chloride/ammonium salt (1)	
	 2nd mark Ammonium (ions) / NH₄⁺ react with water /hydrolysed by water /dissociate in water Ignore ammonium chloride reacts with water (1) 	
	3rd mark $NH_4^+ \rightarrow NH_3 + H^+$ OR $NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$ Allow	
	$NH_4^+ + H_2O \rightarrow NH_4OH + H^+$ (1)	
	Note if no other mark awarded Just 'strong acid – weak base (titration)' / ammonium chloride is the salt of a strong acid and a weak base scores (1) only	

Question Number	Acceptable Answers	Mark	
1(a) (iii)	If final answer is 1.6(2), with correct working or without working, award 4 marks		
	Mol of ammonia used = $(25/1000 \times 0.024)$ = 6×10^{-4} mol		
	and Mol of acid added = $(40/1000 \times 0.054)$ = 2.16×10^{-3} (1)		
	Mol of excess acid = $2.16 \times 10^{-3} - 6 \times 10^{-4}$ = 1.56×10^{-3} mol (1)		
	$[H^+] = 1.56 \times 10^{-3} / (65 / 1000) = 0.024 \text{ mol dm}^{-3}$ (1)		
	$pH = -log [H^+] = 1.6(2)$ (1)		
	Ignore SF except 1 SF Allow TE for 2 nd , 3 rd marks Allow TE for 4 th mark provided pH is less than 7 and it is based on some use of data in question		
	Alternative method for 1^{st} and 2^{nd} marks Mol of ammonia used = $(25/1000 \times 0.024)$ = 6×10^{-4} mol		
	and Volume of acid used = $\frac{6 \times 10^{-4} \times 1000}{0.054}$ = 11.111 cm ³ (1) Volume of acid left = 40 - 11.111 = 28.889 cm ³ Mol of excess acid = $\frac{28.889 \times 0.054}{1000}$		
	$= 1.56 \times 10^{-3} \text{ mol} $ (1)		

Question Number	Acceptable Answers	Reject	Mark
1(b)(i)	ITHER $[H^+]^2 = 5.5 \times 10^{-13} \text{ or } [H^+] = \sqrt{5.5 \times 10^{-13}}$ 7.416×10 ⁻⁷ (1) (mol dm ⁻³) pH = $-\log\sqrt{5.5 \times 10^{-13}}$ (= 6.12982 / 6.13 (1) OR pK _w = 12.26 (1 pH = $\frac{1}{2}$ pK _w (= 6.130) (1	6.13 with no working	2

Question Number	Acceptable Answers		Reject	Mark
1(b) (ii)	Neutral(1 $[H^+] = [OH^-]$ /equal amounts of H^+ ar OH^- ions ORBoth $[H^+]$ and $[OH^-]$ have increased bythe same amount(1)	1) nd 1)	Acidic or alkaline for both marks	2

Total for Question 1 = 14 marks

Question Number	Acceptable Answers		Reject	Mark
2 (a)(i)	IGNORE sf except 1			
	If answer is 8.485 x 10 ⁻³ (moldm ⁻³), award marks	2		
	If not, $[OH^{-}(aq)] = \sqrt{(K_b [NH_3])}$ $= \sqrt{(1.8 \times 10^{-5} \times 4.0)}$	(1)		
		(')		
	= 8.485 x 10 ⁻³ (mol dm ⁻³)	(1)		2

Question Number	Acceptable Answers		Reject	Mark
2 (a)(ii)	IGNORE sf except 1			
	If answer is 11.9(3)/12, award 2 marks			
	If not,			
	EITHER – Method 1 $[H^+] = \frac{1 \times 10^{-14}}{[OH^-]}$			
	$= \frac{1 \times 10^{-14}}{8.485 \times 10^{-3}}$	(1)		
	= 1.179×10^{-12} ALLOW ecf from their answer to (i)			
	$pH = -\log 1.179 \times 10^{-12} = 11.9(3)$			
	ALLOW ecf from their answer for $[H^+]$	(1)		
	OR – Method 2			
	pOH = $-\log 8.485 \times 10^{-3} = 2.07$ ALLOW ecf from their answer to (i)	(1)		
	pH = (14 - 2.07 =) 11.9(3) ALLOW ecf from their answer to pOH	(1)		
				2

Question Number	Acceptable Answers	Reject	Mark
2(b)*(iii)		universal indicator loses all 3 marks	
	First markany indicator from 4 to 10 or 12, 13 in theData booklet – see endALLOW ecf from the vertical portion on theirgraph(1)	litmus loses first mark only	
	Second mark alkaline to acidic colour change for their stated indicator ALLOW acidic to alkaline colour change if their curve shows alkali added to acid (1)		
	Third mark pH range (of indicator) is within the vertical section of the graph OR pKin (± 1) is in the vertical section of the graph OR pKin is nearest to the pH at the end/		
	equivalence point ALLOW indicator will change colour in the vertical section of the graph ALLOW Indicator will change colour at the end/ equivalence point ALLOW (because it is a) titration of a strong acid with		
	a weak base (1)		3

Question Number	Acceptable Answers	Mark
2 (c)(i)	IGNORE sf except 1	
	If answer is 3.84 (mol dm ⁻³), award 3 marks If not,	
	$\frac{24.0 \times 4}{1000} = 0.096$ (1)	
	EITHER	
	number of moles ammonia = $0.096 \text{ in } 25 \text{ cm}^3$ (1)	
	concentration of ammonia = $\frac{0.096 \times 1000}{25}$	
	$= 3.84 \text{ (mol dm}^{-3}\text{)}$ (1)	
	OR	
	number of moles ammonia = $0.288 \text{ in } 75 \text{ cm}^3$ (1)	
	concentration of ammonia = $\frac{0.288 \times 1000}{75}$ = 3.84 (mol dm ⁻³) (1)	
	IGNORE unit unless incorrect	
	ALLOW ecf in both methods on their number of moles of ammonia	3

Question Number	Acceptable Answers	Mark
2 (c)(ii)	IGNORE sf except 1 (concentration of ammonia in trichloromethane =) 0.16 (mol dm ⁻³) ALLOW ecf from their answer to (c)(i), provided it is less than 4.0 and given to 2 or more sf	1

Question Number	Acceptable Answers	Reject	Mark
2(c)(iii)	Expression for Kc and answer needed for the mark $K_c = [NH_3(aq)]$ [NH ₃ (CHCl ₃)] ALLOW one state symbol missing $= \frac{3.84}{0.16}$ = 24(.0) IGNORE sf, including 1 sf, and units	<i>K</i> _c expressions without both state symbols	
	ALLOW ect from answers to (c)(i) and (c)(ii)		1

Question Number	Acceptable Answers	Reject	Mark
2(c)(iv)	(ammonia/ it is much more soluble in water) as can form hydrogen bonds with water ALLOW more/ stronger hydrogen bonds with water (than with trichloromethane)		
			1

Total for Question 2 = 18 marks

Question Number	Acceptable Answers	Mark
3(a)(i)	$ (K_c =) [CH_3COOCH_2CH_3][H_2O] [CH_3COOH][CH_3CH_2OH] ALLOW C_2H_5OH for ethanol ALLOW CH_3CO_2H for ethanoic acid ALLOW CH_3CO_2CH_2CH_3 / CH_3CO_2C_2H_5 /CH_3COOC_2H_5 for ethyl ethanoate IGNORE state symbols, even if incorrect$	(1)

Question Number	Acceptable Answers		Mark
Number 3(a)(ii)	Stand alone marks the enthalpy change is (very) small/close to zero OR reaction is slightly exothermic therefore, (the magnitude of) $\Delta S_{surroundings} (= -\Delta H/T)$ changes very little IGNORE $\Delta S_{surroundings}$ is positive/small/less/decreases $\Delta S_{total} / K_c$ changes very little (provided there is no chance	(1) (1) ge of	(3)
	State) Ignore references to ΔS_{system}	(1)	

Question	Acceptable Answers	Reject	Mark
Question Number 3(a)*(iii)	Acceptable AnswersIf final answer is 5.1143/5.1, award 6 marksIf not, award marks as followsMarks 1 and 2 If mol CH ₃ COOH left = 0.040 (2) Otherwise: mol NaOH/total mol of acid = 45.0 x 1.00/1000 = 0.045 (1)mol CH ₃ COOH left = mol NaOH/total mol of acid - 0.005 (1)mol CH ₃ COOH left = mol NaOH/total mol of acid 	Reject any units	Mark (6)
	a specific volume e.g. 45 to calculate the concentration IGNORE SF except 1 SF in final answer		

Question Number	Acceptable Answers	Mark
Question Number 3 (b) (i)	Acceptable Answers EITHER C : H : 0 mol $\frac{64.9}{12}$: $\frac{13.5}{13.5}$: $\frac{21.6}{12}$ = 5.408: 13.5 : 1.35 (1) = 4.006 : 10 : 1 = 4 : 10 : 1 use of 74 to show molecular formula is C ₄ H ₁₀ O eg M _r is (4x12)+(10x1)+16 =74 (1) OR C atoms = $\frac{64.9 \times 74}{100 \times 12}$ = 4 H atoms = $\frac{13.5 \times 74}{100 \times 12}$ = 10 O atoms = $\frac{21.6 \times 74}{100 \times 1}$ = 1 O atoms = $\frac{21.6 \times 74}{100 \times 1}$ = 1 All 3 correct scores 2 Any 2 correct scores 1 OR % C = $\frac{48 \times 100}{74}$ = 64.9	Mark (2)
	% H = $\frac{10 \times 100}{74}$ = 13.5 % O = $\frac{16 \times 100}{74}$ = 21.6	
	All 3 correct scores (2) Any 2 correct scores (1)	

Question Number	Acceptable Answers	Reject	Mark
3(b)(ii)	H H H H H H H H	molecular formula OH-C on left of structure once only	(2)
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	more than 1 H missing from a bond	
	Alcohols can be in any order		
	ALLOW OH		
	All FOUR correct scores(2)Two or three correct scores(1)		
	ALLOW all four skeletal/structural/mixture of displayed and structural (1)		
	IGNORE optical isomers of butan-2-ol		

Question Number	Acceptable Answers		Mark
3(b)(iii)	$CH_{3}C^{+}HOH/[CH_{3}CHOH]^{+}$ ALLOW CH_{3}CHOH^{+}/^{+}CH_{3}CHOH (1)	1)	(2)
	$^{+}CH_{2}CH_{2}OH/[CH_{2}CH_{2}OH]^{+}$ ALLOW CH ₂ CH ₂ OH ⁺ /C ₂ H ₄ OH ⁺ ((1)	
	Only penalise missing + once.		
	Note: If no structures given, allow 1 mark for $C_2H_5O^+$ but do not award the mark if $C_3H_9^+$ is given as well		

Question Number	Acceptable Answers	Mark
3(b)(iv)	butan-1-ol and butan-2-ol OR structures OR identified by number from (b)(ii)	(1)

(Total for Question 3 = 23 marks)