Equilibria

Mark Scheme 2

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	Rates, Equilibria \& Further Organic Chemistry
Sub Topic	Equilibria
Booklet	Mark Scheme 2

Time Allowed:	66 minutes
Score:	$/ 55$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$

Questio n Number	Acceptable Answers	Reject	Mark
$\begin{align*} & \text { 1(a) } \\ & \text { (i) } \tag{1} \end{align*}$	$\mathbf{1}^{\text {st }}$ mark: Identification of buffer Any mention of buffer solution / buffering (region) $\mathbf{2}^{\text {nd }}$ mark: Identification of species responsible for buffering action ammonia/ NH_{3} and ammonium ions $/ \mathrm{NH}_{4}{ }^{+}$ present (in significant concentrations) OR ammonia/ NH_{3} and ammonium chloride $/ \mathrm{NH}_{4} \mathrm{Cl}$ present (in significant concentrations) OR weak base and salt/conjugate acid present (in significant concentrations) OR B and BH^{+}present (in significant concentrations) Can be awarded from a correct equation $3^{\text {rd }}$ mark: For mention of how this buffer works on addition of small amounts of \mathbf{H}^{+} ions (relatively large concentration/reservoir of) ammonia molecules react with added hydrogen ions/ $\mathrm{H}^{+} /$(hydrochloric) acid OR (relatively large concentration/reservoir of weak) base reacts with added hydrogen ions / $\mathrm{H}^{+} /$(hydrochloric) acid OR $\mathrm{H}^{+}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4}^{+}$ Allow reversible arrow OR Adding (hydrochloric) acid/ H^{+}/hydrogen ions has negligible effect on ratio $\left[\mathrm{NH}_{3}\right]:\left[\mathrm{NH}_{4}{ }^{+}\right]$ Ignore references to buffering action on addition of OH^{-}(not relevant here) Ignore general descriptions of buffer solution eg resists change in pH when small amounts of acid or alkali added	Acidic buffer Weak acid and its conjugate base HA and A^{-}	3

www.igexams.com

Question Number	Acceptable Answers	Mark
$\begin{aligned} & \text { 1(a) } \\ & \text { (ii) } \end{aligned}$	Note - the equations $\begin{aligned} & \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \\ & \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+} \end{aligned}$ score all three marks Note -the equation $\mathrm{NH}_{4}{ }^{+} \rightarrow \mathrm{NH}_{3}+\mathrm{H}^{+}$ scores 2 marks, but if (aq) state symbols are given, scores 3 marks $1^{\text {st }}$ mark: Ammonium ions $/ \mathrm{NH}_{4}{ }^{+}$present (at equivalence point) OR ammonium chloride/ammonium salt $2^{\text {nd }}$ mark Ammonium (ions) / $\mathrm{NH}_{4}{ }^{+}$react with water /hydrolysed by water/dissociate in water Ignore ammonium chloride reacts with water $3^{\text {rd }}$ mark $\mathrm{NH}_{4}^{+} \rightarrow \mathrm{NH}_{3}+\mathrm{H}^{+}$ OR $\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$ Allow $\begin{equation*} \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+} \tag{1} \end{equation*}$ Note if no other mark awarded Just 'strong acid - weak base (titration)' / ammonium chloride is the salt of a strong acid and a weak base scores (1) only	3

Question Number	Acceptable Answers	Mark
$\begin{aligned} & \text { 1(a) } \\ & \text { (iii) } \end{aligned}$	If final answer is 1.6(2), with correct working or without working, award 4 marks $\begin{align*} & \text { Mol of ammonia used }=(25 / 1000 \times 0.024) \\ & =6 \times 10^{-4} \mathrm{~mol} \\ & \text { and } \\ & \text { Mol of acid added }=(40 / 1000 \times 0.054) \\ & \left.=2.16 \times 10^{-3}\right) \tag{1} \end{align*}$ $\begin{align*} \text { Mol of excess acid }= & 2.16 \times 10^{-3}-6 \times 10^{-4} \\ = & 1.56 \times 10^{-3} \mathrm{~mol} \tag{1} \end{align*}$ $\begin{align*} & {\left[\mathrm{H}^{+}\right]=1.56 \times 10^{-3} /(65 / 1000)=0.024 \mathrm{~mol} \mathrm{dm}^{-3}} \tag{1}\\ & \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=1.6(2) \tag{1} \end{align*}$ Ignore SF except 1 SF Allow TE for $2^{\text {nd }}, 3^{\text {rd }}$ marks Allow TE for $4^{\text {th }}$ mark provided pH is less than 7 and it is based on some use of data in question	4

Question Number	Acceptable Answers	Reject	Mark
1(b)(i)	$\left.\begin{array}{l} \text { ITHER } \\ {\left[\mathrm{H}^{+}\right]^{2}=5.5 \times 10^{-13} \text { or }\left[\mathrm{H}^{+}\right]=\sqrt{ } 5.5 \times 10^{-13} /} \\ 7.416 \times 10^{-7} \\ (\mathrm{~mol} \mathrm{dm} \end{array}\right)$	6.13 with no working	2

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
1(b) (ii)	Neutral (1)	Acidic or alkaline for both marks	$\mathbf{2}$
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right] /$equal amounts of H^{+}and OH^{-}ions OR Both $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$have increased by the same amount	(1)		

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
2(a)(i)	I GNORE sf except 1 If answer is $8.485 \times 10^{-3}\left(\right.$ moldm $\left.^{-3}\right)$, award 2 marks If not, $\left.\begin{array}{rl} {\left[\mathrm{OH}^{-}(\mathrm{aq})\right]} & =\sqrt{ }\left(\mathrm{K}_{\mathrm{b}}\left[\mathrm{NH}_{3}\right]\right) \\ & =\sqrt{ }\left(1.8 \times 10^{-5} \times 4.0\right) \\ & =8.485 \times 10^{-3}(\mathrm{~mol} \mathrm{dm} \tag{1} \end{array}\right)$		2

Question Number	Acceptable Answers	Reject	Mark
2(a)(ii)	IGNORE sf except 1 If answer is 11.9(3)/ 12, award 2 marks If not, EITHER - Method 1 $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=\frac{1 \times 10^{-14}}{\left[\mathrm{OH}^{-}\right]}} \\ & =\frac{1 \times 10^{-14}}{8.485 \times 10^{-3}} \\ & =1.179 \times 10^{-12} \end{aligned}$ ALLOW ecf from their answer to (i) $\begin{equation*} \mathrm{pH}=-\log 1.179 \times 10^{-12}=11.9(3) \tag{1} \end{equation*}$ ALLOW ecf from their answer for $\left[\mathrm{H}^{+}\right]$ OR - Method 2 $\begin{equation*} \mathrm{pOH}=-\log 8.485 \times 10^{-3}=2.07 \tag{1} \end{equation*}$ ALLOW ecf from their answer to (i) $\begin{equation*} \mathrm{pH}=(14-2.07=) 11.9(3) \tag{1} \end{equation*}$ ALLOW ecf from their answer to pOH		

Question No	Acceptable Answers	Mark
2(b)(i)	$\begin{array}{r} \left(\mathrm{pH}_{1}=-\log 4.0\right) \\ \quad=0.6(021) \end{array}$	1
	 First mark graph starting at 11.9/ answer to a(ii), ± 1 small square, provided above 7 Second mark buffering region to $\mathbf{2 5} \mathrm{cm}^{3}$ ALLOW any line showing a decrease in pH from 0 to $25 \mathrm{~cm}^{3}$ of HCl added Third mark straight vertical portion between 8 and 1 , midpoint below 7 and between 2 and 7 pH units long Fourth mark finishing at +0.5 to -0.8 , with at least $27.5 \mathrm{~cm}^{3}$ of HCl added ALLOW final pH as answer to (b)(i), within 1 pH unit, if pH is less than answer to (b)(i) or within 1 small square if pH is more than answer to (b)(i) ALLOW If graph is drawn with aqueous ammonia added to hydrochloric acid, only the second and third marks are available for the correct vertical portion at $25 \mathrm{~cm}^{3}$	4

Question Number	Acceptable Answers	Reject	Mark
2(b)*(iii)	First mark any indicator from 4 to 10 or 12,13 in the Data booklet - see end ALLOW ecf from the vertical portion on their graph Second mark alkaline to acidic colour change for their stated indicator ALLOW acidic to alkaline colour change if their curve shows alkali added to acid Third mark pH range (of indicator) is within the vertical section of the graph OR pKin (± 1) is in the vertical section of the graph OR pKin is nearest to the pH at the end/ equivalence point ALLOW indicator will change colour in the vertical section of the graph ALLOW Indicator will change colour at the end/ equivalence point ALLOW (because it is a) titration of a strong acid with a weak base	universal indicator loses all 3 marks litmus loses first mark only	

Question Number	Acceptable Answers		Mark
2(c)(i)	I GNORE sf except 1 If answer is $3.84\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$, award 3 marks If not, number of moles of acid $=$ $\begin{equation*} \frac{24.0 \times 4}{1000}=0.096 \tag{1} \end{equation*}$ EITHER number of moles ammonia $=0.096$ in $\mathbf{2 5} \mathbf{c m}^{\mathbf{3}}$ concentration of ammonia $\begin{align*} & =\frac{0.096 \times 1000}{25} \\ & =3.84\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{align*}$ OR number of moles ammonia $=0.288$ in $\mathbf{7 5} \mathbf{c m}^{\mathbf{3}}$ concentration of ammonia $\begin{align*} & =\frac{0.288 \times 1000}{75} \\ & =3.84\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{align*}$ I GNORE unit unless incorrect ALLOW ecf in both methods on their number of moles of ammonia		3
Question Number	Acceptable Answers I GNORE sf except 1 (concentration of ammonia in trichloromethane $=$) $0.16\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ ALLOW ecf from their answer to (c)(i), provided it is less than 4.0 and given to 2 or more sf		Mark
2(c)(ii)			1
Question Number	Acceptable Answers	Reject	Mark
2(c)(iii)	Expression for Kc and answer needed for the mark $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}(\mathrm{aq})\right]}{\left[\mathrm{NH}_{3}\left(\mathrm{CHCl}_{3}\right)\right]}$ ALLOW one state symbol missing $\begin{aligned} & =\frac{3.84}{0.16} \\ & =24(.0) \end{aligned}$ I GNORE sf, including 1 sf , and units ALLOW ecf from answers to (c)(i) and (c)(ii)	K_{c} expressions without both state symbols	

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (c) (i v)}$	(ammonia/ it is much more soluble in water) as can form hydrogen bonds with water		
	ALLOW more/ stronger hydrogen bonds with water (than with trichloromethane) IGNORE answers based on polarity/ hydrophilic		$\mathbf{1}$

Total for Question 2 = 18 marks

www.igexams.com

Question Number	Acceptable Answers	Mark
3(a)(i)	$\left(\mathrm{K}_{\mathrm{c}}=\right)\left[\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$ $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right]$	(1)
	ALLOW $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ for ethanol ALLOW $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ for ethanoic acid ALLOW $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} / \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5} / \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$ for ethyl ethanoate IGNORE state symbols, even if incorrect	

| Question
 Number | Acceptable Answers | Mark |
| :--- | :--- | ---: | :---: |
| 3(a)(ii) | Stand alone marks
 the enthalpy change is (very) small/close to zero
 OR
 reaction is slightly exothermic
 therefore, (the magnitude of) $\Delta \mathrm{S}_{\text {surroundings }}(=-\Delta \mathrm{H} / \mathrm{T})$
 changes very little
 IGNORE $\Delta \mathrm{S}_{\text {surroundings is positive/small/less/decreases }}$
 $\Delta \mathrm{S}_{\text {total }} / \mathrm{K}_{\mathrm{c}}$ changes very little (provided there is no change of
 state)
 Ignore references to $\Delta \mathrm{S}_{\text {system }}$ (1) | |

Question Number	Acceptable Answers	Reject	Mark
3(a)*(iii)	If final answer is 5.1143/ 5.1, aw ard 6 marks If not, award marks as follows Marks 1 and 2 If mol CH 33 COOH left $=0.040$ Otherwise: mol $\mathrm{NaOH} /$ total mol of acid $\begin{equation*} =45.0 \times 1.00 / 1000=0.045 \tag{1} \end{equation*}$ $\mathrm{mol} \mathrm{CH} 3 \mathrm{COOH}_{\text {l }}$ left $=\mathrm{mol} \mathrm{NaOH} /$ total mol of acid - 0.005 Marks 3 to 6 $\mathrm{mol} \mathrm{CH} 3 \mathrm{CH}_{2} \mathrm{OH}$ at eqm $=0.140$ mol CH $\mathrm{COOCH}_{2} \mathrm{CH}_{3}$ at eqm $=0.080$ $\mathrm{mol} \mathrm{H}_{2} \mathrm{O}$ at eqm $=0.358$ $\begin{align*} \mathrm{K}_{\mathrm{c}}= & \frac{0.080}{\mathrm{~V}} \times \frac{0.358}{\mathrm{~V}} \tag{1}\\ & \frac{0.040}{\mathrm{~V}} \times \frac{0.140}{\mathrm{~V}} \\ = & 5.1143 \end{align*}$ consequential on their expression for K_{c} shown/used here and their numbers of moles ALLOW K_{c} expression without the Vs but do not allow this sixth mark if the moles are divided by a specific volume e.g. 45 to calculate the concentration IGNORE SF except 1 SF in final answer	any units	(6)

www.igexams.com

Question Number	Acceptable Answers	Mark
3(b)(i)	use of 74 to show molecular formula is $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ eg M_{r} is $(4 \times 12)+(10 \times 1)+16=74$ OR C atoms $=\frac{64.9 \times 74}{100 \times 12}=4$ H atoms $=\frac{13.5 \times 74}{100 \times 1}=10$ $O \text { atoms }=\frac{21.6 \times 74}{100 \times 16}=1$ This may be done in 2 steps eg $\text { C } \frac{64.9 \times 74}{100}=48 \frac{48}{12}=4$ All 3 correct scores 2 Any 2 correct scores 1 OR $\begin{aligned} & \% \mathrm{C}=\frac{48 \times 100}{74}=64.9 \\ & \% \mathrm{H}=\frac{10 \times 100}{74}=13.5 \\ & \% \mathrm{O}=\frac{16 \times 100}{74}=21.6 \end{aligned}$ All 3 correct scores (2) Any 2 correct scores (1)	(2)

Question Number	Acceptable Answers	Reject	Mark
3(b)(ii)	 Alcohols can be in any order ALLOW OH All FOUR correct scores Two or three correct scores ALLOW all four skeletal/structural/mixture of displayed and structural I GNORE optical isomers of butan-2-ol	molecular formula $\mathrm{OH}-\mathrm{C}$. on left of structure once only more than 1 H missing from a bond	(2)

Question Number	Acceptable Answers	Mark
3(b)(iii)	$\begin{equation*} \mathrm{CH}_{3} \mathrm{C}^{+} \mathrm{HOH} /\left[\mathrm{CH}_{3} \mathrm{CHOH}\right]^{+} \tag{1} \end{equation*}$ ALLOW $\mathrm{CH}_{3} \mathrm{CHOH}^{+} /+\mathrm{CH}_{3} \mathrm{CHOH}$ $\begin{align*} & { }^{+} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} /\left[\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right]^{+} \\ & \text {ALLOW } \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}^{+} / \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{OH}^{+} \tag{1} \end{align*}$ Only penalise missing + once. Note: If no structures given, allow 1 mark for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{+}$but do not award the mark if $\mathrm{C}_{3} \mathrm{H}_{9}{ }^{+}$is given as well	(2)

Question Number	Acceptable Answers	Mark
$\mathbf{3 (b) (i v)}$	butan-1-ol and butan-2-ol OR structures OR identified by number from (b)(ii)	(1)

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
3(b)(v)	 ALLOW any unambiguous structures e.g. displayed, structural, skeletal or a combination of these, TE from (b)(iv)	$\mathrm{C}_{4} \mathrm{H}_{9}$ structures with more than 1 H missing from a bond	(1)

www.igexams.com

Question Number	Acceptable Answers 3(b)(vi) eg propanol scores (0) First mark - structure Correct structure	Mark

(Total for Question 3 = 23 marks)

