How Far? Entropy

Mark Scheme

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	Rates, Equilibria \& Further Organic Chemistry
Sub Topic	How Far? - Entropy
Booklet	Mark Scheme

Time Allowed:	48 minutes
Score:	$/ 40$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$	A		1
Question Number Correct Answer Reject Mark $\mathbf{2}$ D 1 Question Number Correct Answer Reject Mark $\mathbf{3}$ B 1			

Question Number	Correct Answer	Mark
4(a)	D	

Question Number	Correct Answer	Mark
4(b)	C	

Question Number	Correct Answer	Reject	Mark
$\mathbf{5}$	\mathbf{C}		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{6}$	A		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{7}$	\mathbf{C}		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{8}$	B		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{9}$	B		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$	A		(1)

www.igexams.com

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1}$	D		$\mathbf{1}$
Question Number Correct Answer Reject			
$\mathbf{1 2}$	C		Mark

Question Number	Acceptable Answers	Reject	Mark
13a(i)	$\begin{aligned} & \Delta \mathrm{S}_{\text {system }}=240.0-102.5-210.7 \\ & =-73.2 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} /-0.0732 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{aligned}$ ALLOW - $73 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ Correct data Final answer with sign and units (in any order) TE on incorrect data		2

Question Number	Acceptable Answers	Reject	Mark
13a(ii)	First check final answer $\begin{align*} & +118.1 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} /+0.1181 \mathrm{~kJ} \\ & \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & \text { ALLOW } \\ & +120 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \tag{2} \end{align*}$ OR $\Delta \mathrm{S}_{\text {surroundings }}=-(-57 \times 1000 / 298)$ $=(+) 191.3\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ ALLOW $\begin{equation*} (+) 191\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \tag{1} \end{equation*}$ $\begin{align*} & \Delta \mathrm{S}_{\text {total }}=(-73.2+191.3)=+118.1 \mathrm{~J} \\ & \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \tag{1} \end{align*}$ Use of $-73+191$ gives +118		2

Question Number	Acceptable Answers	Reject	Mark	
$\mathbf{1 3 a (\text { iii) }}$	(it ceases when) $\Delta \mathrm{S}_{\text {total }}=0$	(1)		2
	(this is when $\mathrm{T} \Delta \mathrm{S}_{\text {system }}=\Delta \mathrm{H}$)			
	$\mathrm{T}=\frac{\Delta \mathrm{H}}{\Delta \mathrm{S}_{\text {system }}}=\frac{57 \times 1000}{73.2}$			
$=778.69 / 778.7 / 779 / 780(\mathrm{~K})$		778		
	Use of 73 gives $780.1 / 780(\mathrm{~K})$	(1)	$-780.1-780$	

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 b}$	(Even though thermodynamically feasible) (The reaction is very slow because) the activation energy is high/ there is an activation energy barrier	Reaction is not spontaneous Makes reaction faster Catalyst lowers activation energy Provides an alternative route with a lower activation energy	1

(Total for Question 13 = 7 marks)

Question Number	Acceptable Answers	Mark
14(a)(i)	Penalise lack of + sign once only in (a)(i) or (ii) in each final answer IGNORE sf in (a)(i), (ii), and (iii) in each final answer, except 1 sf FI RST, CHECK THE FINAL ANSWER $+479.7 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ scores 3 marks $479.7 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ scores 2 marks (+ sign missing) +479.7/479.7 scores 2 marks (units and/or + missing) $+1709.7 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ scores $\mathbf{2}$ marks - multiple of 12 used for oxygen $1709.7 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} /+1709.7 / 1709.7$ score $\mathbf{1}$ mark - multiple of 12 used for oxygen and positive sign and/or units If these answers are not given, award marks as follows: First mark correct data for CO_{2} (213.6) and $\mathrm{H}_{2} \mathrm{O}$ (69.9) Second mark correct multiples (12, 11, 1 and 24) and Hess's Law applied $\begin{aligned} \Delta S_{\text {system }}^{\ominus}= & 12 \times 213.6+11 \times 69.9 \\ & -(392.4+24 \times 102.5) \end{aligned}$ ALLOW ecf from incorrect data for CO_{2} and/or $\mathrm{H}_{2} \mathrm{O}$ Third mark correct answer with sign and units $=+479.7 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ ALLOW ecf from incorrect data for CO_{2} and/or $\mathrm{H}_{2} \mathrm{O}$ and incorrect multiples	

Question Number	Acceptable Answers		Reject	Mark
14(a)(ii)	$\begin{aligned} & \text { If answer is }+\mathbf{1 8 9 2 5 . 2} \mathbf{~ J ~ m o l}^{-1} \mathbf{K}^{-1} / \\ & \mathbf{+ 1 8 . 9 2 5 2} \mathbf{~ k J ~} \mathbf{m o l}^{-1} \mathbf{K}^{-1} \text {, then award } \mathbf{2} \text { marks } \\ & \text { If not, } \\ & \begin{aligned} \Delta \mathrm{S}_{\text {surroundings }}^{\ominus}= & \frac{-\Delta \mathrm{H}^{\ominus}}{\top} \\ = & -\frac{(-5639.7) \times 1000}{298} \\ = & +18925.2 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} / \\ & +18.9252 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{aligned} \end{aligned}$	(1) (1)	$\begin{aligned} & +18925.1 \\ & \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} / \\ & +18.9251 \\ & \mathrm{~kJ} \mathrm{~mol} \\ & \mathrm{~m}^{-1} \mathrm{~K}^{-1} \end{aligned}$	

Question Number	Acceptable Answers	Mark
14(a)(iii)	$\begin{aligned} & \text { F t mark } \\ & \begin{aligned} \left(\Delta \mathrm{S}_{\text {total }}^{\ominus}\right. & =\Delta \mathrm{S}_{\text {surroundings } \left.+\Delta \mathrm{S}_{\text {system }}^{\ominus}=18925.2+479.7\right)} \\ & =(+) 19404.9\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) /(+) 19.4049\left(\mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \end{aligned} \end{aligned}$ if units given they must be correct ALLOW $(+) 19500\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) /(+) 19.5\left(\mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(\text { from } 19.0+0.480)$ ALLOW ecf on adding answers to (a)(i) and (a)(ii) in the same units (1) Note If answer to (a)(i) was +1709.7, $\Delta \mathrm{S}_{\text {total }}^{\ominus}=+20634.9\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) /+20.6349\left(\mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ Second mark ($\Delta \mathrm{S}_{\text {total }}^{\ominus}$ is positive so) reaction is (thermodynamically) spontaneous/ feasible/ goes to completion ALLOW thermodynamically unstable If their sign for ΔS^{\ominus} total is negative, then ALLOW reaction is not spontaneous/ not feasible/ does not go to completion	

Question Number	Acceptable Answers	Reject	Mark
14(a)(iv)	I ORE comments on $\Delta \mathrm{S}_{\text {system }}^{\ominus}$ First mark ($\Delta \mathrm{S}_{\text {surroundings }}^{\ominus}=-\Delta \mathrm{H}^{\ominus} / \mathrm{T}$ so increase in T makes) $\Delta \mathrm{S}^{\ominus}{ }_{\text {surroundings }}$ less positive/ decreases ALLOW more negative Second mark ($\Delta \mathrm{S}^{\ominus}$ total $=\Delta \mathrm{S}^{\ominus}$ surroundings $+\Delta \mathrm{S}_{\text {system }}^{\ominus}$ so increase in T makes) $\Delta \mathrm{S}_{\text {total }}^{\ominus}$ less positive/ decreases ALLOW more negative NOTE no ecf on $\Delta S^{\ominus}{ }_{\text {surroundings }}$ increases Third mark (because $\Delta \mathrm{S}^{\ominus}$ total is so large and positive to start with) there is an insignificant effect on the extent of the reaction ALLOW ΔS^{\ominus} total is still positive so reaction still goes to completion/is spontaneous ALLOW ecf on $\Delta \mathrm{S}_{\text {total }}$ increases	more exothermic	3
Question Number	Acceptable Answers	Reject	Mark
14(a)(v)	Fir t mark (stable because) high activation energy/ E_{a} (for combustion of sucrose) ALLOW sucrose is kinetically stable/ inert Second mark (hazardous because small particles/ powder have/ has) larger surface area and react faster I GNORE any reference to temperature If answers are not linked to stability and hazardous, still award both marks even if the points are written in the wrong order		2

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
14(a)(vi)	Any two of: obesity/ weight gain/ stored as fat/ get fat tooth decay/ cavities/ toothache diabetes/ glycosuria heart/ cardiovascular condition/ disease/ attack (1) strokes damage to the immune system high insulin levels high blood pressure kidney damage liver disease headaches/ migraines arthritis high cholesterol I GNORE risk of cancer/ high blood sugar/ stomach ulcers		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 4 (b) (i)}$	circles or asterisks on carbons 2-5	(2)	all 6 carbons circled (0)
	all four correct	(1)	
	3 or 2 correct	$\mathbf{(0)}$	
	1 or 0 correct	$\mathbf{(1)}$	
	ALLOW 5 carbons circled		$\mathbf{2}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 4 (b) (i i)}$	rotate the plane of (plane-) polarized light	just 'rotate light'	
	ALLOW rotate plane-polarized light IGNORE optically active/ optical activity/ non- superimposable		$\mathbf{1}$

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
14(b)(iii)	First mark - colour change from a blue (solution) to a red/ orange/ brown/ yellow precipitate ALLOW solid or (s) for precipitate which could be shown in formula or equation Second mark - functional group (glucose/it is) an aldehyde / (has) a CHO group Third mark - oxidation/ reduction copper(II)/Cu ${ }^{2+}$ is reduced (to copper(I)/Cu ${ }^{+}$ oxide by the aldehyde group) $/ \mathrm{Cu}^{2+}+\mathrm{e}^{(-)} \rightarrow \mathrm{Cu}^{+}$ OR the aldehyde/ glucose is oxidized (to the carboxylate/carboxylic acid)/ $\mathrm{RCHO}+[\mathrm{O}] \rightarrow \mathrm{RCOOH}$ OR Benedict's and Fehling's (solutions) are oxidizing agents ALLOW equation showing oxidation of aldehyde and reduction of Cu^{2+} even if not balanced	incorrect observation for one of the reagents for first mark only, eg. silver mirror formed	3

