Electrochemistry

Mark Scheme

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	Transition Metals & Organic Nitrogen Chemistry
Sub Topic	Electrochemistry
Booklet	Mark Scheme

Time Allowed: 64 minutes

Score: /53

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question Number	Correct Answer	Reject	Mark
1	D		1

Question Number	Correct Answer	Reject	Mark
2	D		1

Question Number	Correct Answer	Reject	Mark
3	C		1

Question Number	Correct Answer	Reject	Mark
4	В		1

Question Number	Correct Answer	Reject	Mark
5	D	_	1

Question Number	Correct Answer	Reject	Mark
6	C		1

Question Number	Correct Answer	Reject	Mark
7	A		1

Question Number	Correct Answer	Reject	Mark
8	D		1

Question Number	Correct Answer	Reject	Mark
9	С		1

Question Number	Correct Answer	Reject	Mark
10	D		1

Question Number	Correct Answer	Reject	Mark
11	В		1

Question Number	Correct Answer	Reject	Mark
12	A		1

Question Number	Correct Answer		Reject	Mark
13(a)	(Platinised) platinum/Pt (electrode)			3
	Hydrochloric acid/HCI(aq), covering some of the electrode and 1 mol dm ⁻³ OR 1 mol dm ⁻³ H ⁺ covering electrode (A fully correct hydrogen electrode 2ma)	(1) ax	Sulfuric acid	

Question Number	Correct Answer	Reject	Mark
13(b)	$CH_3OH + 1\frac{1}{2}O_2 \rightarrow CO_2 + 2H_2O$ OR multiples	Uncancelled electrons, H ⁺ ions and H₂O	1

Question Number	Correct Answer	Reject	Mark
13 (c)	$E_{\text{cell}}^{\bullet} = +1.23 - 0.02$		1
	= (+) 1.21 (V)	- 1.21 (V)	

Question Number	Correct Answer	Reject	Mark
13(d)	Additional Comment Note that the words advantage and disadvantage are not required		2
	(Advantages)		
	Any one from:		
	Easier to store/transport than hydrogen (as a liquid rather than a gas)		
	OR		
	Methanol can be produced from waste / methanol is renewable		
	OR		
	Energy per volume is greater (1)		
	IGNORE		
	Hydrogen is flammable/ explosive		
	(Disadvantages)		
	Any one from:		
	Produces CO ₂		
	OR		
	Low efficiency		
	OR		
	Limited power/energy (1)		
	OR		
	Lower emf/E value		
	IGNORE		
	Land used up in producing methanol instead for crops		

(Total for Question 13 = 7 marks)

Question Number	Acceptable Answer	Reject	Mark
14(a)(i)	$Fe(s) + H_2SO_4(aq) \rightarrow FeSO_4(aq) + H_2(g)$		1
	OR		
	$Fe(s) + 2H^{+}(aq) \rightarrow Fe^{2+}(aq) + H_{2}(g)$		
	OR ionic equations including sulfate ions OR multiples		

Question Number	Acceptable Answer	Reject	Mark
14(a)(ii)	Otherwise the Fe ²⁺ formed will oxidize ALLOW So air / oxygen cannot enter the flask To prevent reaction with air /oxygen (1) Hydrogen can escape through the slit OR So pressure does not build up (1)	Iron/steel oxidized	2
	IGNORE Acid spray		

Question Number	Acceptable Answer	Reject	Mark
14(a)(iii)	Transfer the reaction mixture to a (250 cm³) volumetric/graduated flask ALLOW standard flask (1) (Rinse conical flask and) add washings to the volumetric flask (1) Make solution up to the mark (with distilled water/sulfuric acid) and then mix ALLOW any indication of mixing (1) IGNORE Filtration	Using other liquids	3

Question Number	Acceptable Answer	Reject	Mark
14 (a)(iv)	$5Fe^{2+} + MnO_4^- + 8H^+$		1
	\rightarrow 5Fe ³⁺ + Mn ²⁺ + 4H ₂ O		
	OR multiples		
	Ignore state symbols even if incorrect		

Question Number	Acceptable Answer	Reject	Mark
14(a)(v)	Amount $MnO_4^- = 22.15 \times 0.0195 / 1000$ $= 4.31925 \times 10^{-4} \text{ ans*}$ Amount $Fe^{2+} = 5 \times \text{ans*}$ (1) $= 2.159625 \times 10^{-3} \text{ ans***}$ Mass of iron in wire = $10 \times ** \times 55.8$ (1) $= 1.20507 \text{ (g) ans***}$ % purity = $100 \times \text{ans***} / 1.25$ $= 96.40566 = 96.4 \%$ (1) Ignore rounding errors until final answer Correct answer (96.4%) with or without working scores 4	Answer not to 3 SF	4
	ALLOW Use of $Ar(Fe) = 56$ when $Amount MnO_4^- = 22.15 \times 0.0195 / 1000$ $= 4.31925 \times 10^{-4} \text{ ans*}$ $Amount Fe^{2+} = 5 \times \text{ans*} \qquad \text{(1)}$ $= 2.159625 \times 10^{-3} \text{ ans**}$ Mass of iron in wire = $10 \times \text{x*} \times 56 \qquad \text{(1)}$ Mass of iron in wire = 1.20939 % purity = $96.7512 = 96.8 \% \qquad \text{(1)}$ Ignore intermediate rounding until final answer Correct answer (96.8%) with or without working scores 4 TE on each stage in the calculation % purity > $100 \times 100 \times 100 \times 100 \times 1000 \times 1000$	Answer not to 3 SF	

Question Number	Acceptable Answer	Reject	Mark
14(a)(vi)	Colourless / pale yellow to (pale) pink / first permanent pink	Purple Just `(pale) pink'	1

Question Number	Acceptable Answer	Reject	Mark
14(a)(vii)	(More manganate(VII) is needed to oxidize Fe ²⁺ , so) titre will be larger (1) Stand alone mark		3
	Because the Mn oxidation number changes from 7 to 4 (rather than 2) OR Mn accepts fewer electrons per mole (1)		
	(Brown precipitate is) manganese(IV) oxide / MnO ₂ ALLOW Mn(OH) ₄ (1) IGNORE References to inaccurate / inconsistent titre values	Mn(OH) ₂	

Question Number	Acceptable Answer	Reject	Mark
14(b)(i)	Anodic area: $Fe^{2^{+}} + 2e(^{-}) \rightleftharpoons Fe \qquad (E^{e} = -0.44 \text{ V})$ OR $Fe \rightleftharpoons Fe^{2^{+}} + 2e(^{-}) \qquad (1)$ Cathodic area: $O_{2} + 2H_{2}O + 4e(^{-}) \rightleftharpoons 4OH^{-} (E^{e} = +0.40 \text{ V})$ (1) ALLOW $1/2O_{2} + 2H^{+} + 2e(^{-}) \rightleftharpoons H_{2}O (E^{e} = +1.23 \text{ V})$ Penalise omission of electrons or use of cell diagrams once only Anode and cathode reversed max 1. IGNORE State symbols even if incorrect Single arrow in equations		2

Question Number	Acceptable Answer	Reject	Mark
14(b)(ii)	$E_{\text{cell}}^{\circ} = (+)0.40 - (-0.44) = (+)0.84 \text{ (V)}$ ALLOW $E_{\text{cell}}^{\circ} = (+)1.23 - (-0.44) = (+)1.67 \text{ (V)}$ Correct answer with no working scores 1		1

Question Number	Acceptable Answer	Reject	Mark
14(b)(iii)	Dissolved salt makes the water a better conductor (of ions) OR The solution acts like a salt bridge OR Makes it an (effective) electrolyte OR Improves the flow of ions through the solution ALLOW Improves the flow of electrons through the metal	Improves the flow of ions through the metal Improves the flow of electrons through the solution	1

Question Number	Acceptable Answer	Reject	Mark
14(b)(iv)	Magnesium has a more negative E° (allow more reactive) and so reduces the Fe ²⁺ OR suppresses the oxidation of iron OR forces the iron (in the absence of oxygen) to act as the cathode ALLOW Mg corrodes / oxidizes in preference to / faster than (the Fe / steel) OR Magnesium acts as a sacrificial anode	Just 'sacrificial protection'	1

Total for Question 14 = 20 marks

Question Number	Acceptable Answers	Reject	Mark
15(a)(i)	(pale) pink OR First permanent pink Ignore 'Colourless to'	purple	

Question Number	Acceptable Answers	Reject	Mark
15(a)(ii)	$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$		1

Question Number	Acceptable Answers	Reject	Mark
15(a)(iii)			5
	$= 5.03275 \times 10^{-4} \text{ mol (ans *)}$		
	Amount $C_2O_4^{2-}$ in 25 cm ³ = ans. * x 5 /2 = 5.03275 x 10^{-4} x 5/2		
	= $1.2581875 \times 10^{-3} \text{ mol}$		
	In 250 cm ³ = 1.2581875 x 10^{-2} mol (ans **)		
	= amount Ca ²⁺ = amount CaCO ₃		
	Mass $CaCO_3 = (ans^{**}) \times 100.1$ = 1.2581875 x $10^{-2} \times 100.1$		
	= 1.2594457 g (ans***)		
	% CaCO ₃ = 100 x (ans***) / 1.77 = 71.15512		
	= 71.2 (%)		
	ALLOW		
	Final answer 71.1 / 71.2 / 71.3 scores 5 marks		
	Final answer must be to 3 SF (max 4 if not)		
	Until final answer ignore SF except 1 SF (penalise once) TE at each stage unless mass $CaCO_3 > 1.77$		
	NOTE Use of ethanedioate mass of 88 in step 4 gives final answer of 62.6% (max 4) Use of calcium ethanedioate mass of 128.1 / 128 in step 4 gives final answer of 91.0% (max 4)		

Question Number	Acceptable Answers	Reject	Mark
15(b)(i)	Excess ethanedioate (ions in the solution) must be removed (1)	Impurities	2
	ALLOW		
	Remove ethanedioic acid	Acid	
	Otherwise more $KMnO_4$ will be used (in the titration) / bigger titre		
	MP2 dependent on MP1		

Question Number	Acceptable A	nswers			Reject	Mark
15 (b)(ii)	Apparatu s	Value	Maximum total error on the stated value	Percentag e error on the stated value		2
	Balance	1.77 g	±0.01 g	0.56 (0.56497)		
	Volumetric flask	250 cm ³	±0.12 cm ³	0.048		
	Pipette	25 cm ³	±0.06 cm ³	0.24		
	Burette	24.55 cm ³	±0.10 cm ³	0.41 (0.40733)		
	All % calculat Any two or th	cions correct aree calculations	s correct	(2) (1)		
	1 mark lost if 2 SF	2 or more corr	ect answers ar	e not given to		

Question	Acceptable Answers	Reject	Mark
Number	t mark		3
15(b)(iii)	EITHER		
	Max. mass of CaC_2O_4 precipitated = 0.015 x 128.1 = 1.9215 g		
	0.0067/2 = 0.00335 g remains in solution (1)		
	Second Mark		
	% error = 100 x 0.00335 / (1.9215 + 0.00335)		
	= 100 x 0.00335 / 1.92485 = 0.174040 = 0.174 %		
	ALLOW % error = 100 x 0.00335 / 1.9215 = 0.174343 = 0.174 %		
	If M_r (CaC ₂ O ₄) = 128 used = 0.174479 % (1)		
	Third Mark		
	Error comparable to / smaller than apparatus uncertainty / less than the worst / less than the balance / less than the total And so acceptable		
	(1)		
	IGNORE SF but penalise incorrect rounding once		
	NOTE		
	No TE for mark 2 from mark 1 BUT TE for mark 3. Accept reverse argument for large percentage.		

Total for Question 15 = 14 marks