Transition Metal Basics

Mark Scheme

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	Transition Metals & Organic Nitrogen Chemistry
Sub Topic	Transition Metal Basics
Booklet	Mark Scheme

Time Allowed: 86 minutes

Score: /71

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question Number	Correct Answer	Reject	Mark
1	В		1

Question Number	Correct Answer	Reject	Mark
2	A		1

Question Number	Correct Answer	Reject	Mark
3	D		1

Question Number	Correct Answer	Reject	Mark
4	A		1

Question Number	Correct Answer	Reject	Mark
5	D		1

Question Number	Correct Answer	Reject	Mark
6	С		1

Question Number	Correct Answer	Reject	Mark
7	В		1

Question Number	Correct Answer	Reject	Mark
8	С		1

Question Number	Correct Answer	Reject	Mark
9	В		1

Question Number	Correct Answer	Reject	Mark
10	В		1

Question Number	Correct Answer	Reject	Mark
11	В		1
Question Number	Correct Answer	Reject	Mark
12	A		1
Question Number	Correct Answer	Reject	Mark
13	С		1
Question Number	Correct Answer	Reject	Mark
14	D		1
			<u>. </u>
Question Number	Correct Answer	Reject	Mark
15	Α		1

Question Number	Acceptable Answers		Reject	Mark
16 (a)(i)	If name and formula are given, both m be correct	ust		
	A = copper(II) chloride / CuCl2	(1)		
	B = tetrachlorocuprate(II) (ion) / CuCl ₂ ALLOW	2- 4	$\mathbf{B} = \text{CuCl}_2$	
	B = trichlorocuprate(II) / CuCl ₃	(1)		
	C = copper(II) hydroxide / Cu(OH)2 / Cu(OH)2(H2O)4	(1)		
	$D = \text{tetraamminecopper(II) (ion) /} $ $Cu(NH_3)_4^{2+} / Cu(H_2O)_2(NH_3)_4^{2+}$	(1)		
	$\mathbf{E} = \text{copper}(I) \text{ oxide } / \text{Cu}_2\text{O}$	(1)		
	$\mathbf{F} = \text{iodine} / I_2 / \text{triiodide (ion)} / I_3 / K$	I ₃ (1)		
	IGNORE state symbols even if incorrect. correct oxidation numbers with formul order of the ligands.	a.		
				6

Question Number	Acceptable Answers	Reject	Mark
16 (a)(ii)	If name and formula are given, both must be correct		
	$\mathbf{X} = (\text{aqueous}) \text{ ammonia / NH}_3(\text{aq})$ ALLOW NH $_3$ / ammonium hydroxide (1)	X = NaOH	
	Y = potassium iodide / KI ALLOW other soluble iodides (1)	iodide / I ⁻ KI and acid HI	
	IGNORE references to concentration		2

Question Number	Acceptable Answers	Reject	Mark
16(a)(iii)	(Product is) ethanoic acid / CH ₃ COOH / ethanoate(ions) / CH ₃ COO (1) IGNORE carboxylic Ethanal is a reducing agent / reduces Cu ²⁺ (1)		
	Stand alone marks IGNORE references to oxidation of ethanol products of reduction (e.g. Cu)		2

Question Number	Acceptable Answers	Reject	Mark
16 (a)(iv)	(Iodine is formed quantitatively and is determined by) titration against sodium thiosulfate solution (of known concentration)	Colorimetry	1

Question Number	Acceptable Answers	Reject	Mark
16 (b)(i)	(3)d orbitals / (3)d subshell split (by the attached ligands) (1)	Orbital / shell is split	
	Electrons are promoted (from lower to higher energy d orbital(s) / levels) OR Electrons move from lower to higher energy d orbital(s) / levels) ALLOW		
	d—d transitions occur (1)		
	Absorbing energy /photons of a certain frequency (in the visible region) ALLOW		
	Absorbing light (1)		
	Reflected / transmitted / remaining light is coloured / yellow / in the visible region		
	ALLOW Complementary colour seen Reflected / transmitted / remaining light / frequency is seen (1)		
	Penalise omission of (3)d once only. Ignore reference to electrons relaxing / dropping to the ground state		4

Question Number	Acceptable Answers	Reject	Mark
16 (b)(ii)	Colour depends on the frequency /wavelength /energy of the absorbed light (1) Different ligands split the d orbitals to		
	a different extent (1)		2

Question Number	Acceptable Answers	Reject	Mark
16 (c)(i)	$2Cu^{+}(aq) \rightarrow Cu(s) + Cu^{2+}(aq)$ ALLOW reversible arrows	Electrons	
			1

Question Number	Acceptable Answers	Reject	Mark
16 (c)(ii)	The copper(I) is oxidized to copper(II) and (in the same reaction) reduced to copper((0)) OR Copper changes from +1 to 0 and +2 IGNORE		
	Reference to a Cu atom		1

Question Number	Acceptable Answers		Reject	Mark
16 (c)(iii)	Relevant reduction potentials are $Cu^{2+} + e^{-} = Cu^{+} E^{0} = +0.15 (V)$ $Cu^{+} + e^{-} = Cu E^{0} = +0.52 (V)$			
	ALLOW single arrows	(1)		
	$E_{\text{cell}}^{\bullet} = 0.52 - 0.15 = (+)0.37 \text{ (V)}$ TE on incorrect E^{\bullet} values providing E^{\bullet} positive	(1) e _{cell} is		
	(E°_{cell}) positive so reaction thermodynamically favourable)			2

Total for Question 16 = 21 marks

Question Number	Correct Answer	Reject	Mark
17(a)(i)	3d ⁵ 4s ¹ /4s ¹ 3d ⁵ ALLOW		1
	Complete configuration $1s^22s^22p^63s^23p^64s^13d^5$		
	ALLOW		
	Capitals and subscripts		

Question Number	Correct Answer		Reject	Mark
17 (a)(ii)	It is 4s ¹ rather than 4s ² because with two of the reasons below			2
	3d ⁵ / half-filled 3d sub shell is particularly stable	(1)		
	The paired electrons repel	(1)		
	All six electrons are in separate orbitals (minimizing repulsion)	(1)		
	ALLOW			
	The energy required to promote/ transfer 4s to 3d is small OR The energy difference between 4s	s and		
	3d is small	(1)		

Question Number	Correct Answer	Reject	Mark
17 (b)(i)	$(E^{\bullet} Zn^{2+}(aq) Zn(s) = -0.76 V$		3
	$E^{\Theta} \operatorname{Cr}^{3+}(aq), \operatorname{Cr}^{2+}(aq) \operatorname{Pt} = -0.41 \mathrm{V}$		
	E^{\bullet} [Cr ₂ O ₇ ²⁻ (aq) + 7H ⁺ (aq)], [2Cr ³⁺ (aq) + 7H ₂ O(I)] Pt = +1.33 V)		
	If no other mark is scored, data scores (1) however shown		
	Calculation of $E_{\text{cell}}^{\bullet}$ values:		
	$E_{\text{cell}}^{\text{e}}$ for first step = 1.330.76 = (+)2.09 (V) (1)		
	$E_{\text{cell}}^{\text{o}}$ for second step = -0.410.76 = (+)0.35 (V) (1)		
	As (both) values are positive, (both) reactions are spontaneous/feasible		
	Third mark is independent (1)		

	Correct Answer	Reject	Mark
Number			
17 (b)(ii)	Orange to green to blue		1
	IGNORE qualifying words eg pale blue		

Question Number	Correct Answer	Reject	Mark
17 (b) (iii)	The small amount of hydrogen produced (does not present a serious risk) ALLOW "Less" for small amount Indication of ventilation		1

Question Number	Correct Answer	Reject	Mark
17 (c)(i)	It is bridging/ bidentate ligand	Polydentate	1

Question Number	Correct Answer	Reject	Mark
17 (c)(ii)	Dative (covalent) (bonds)/ co-ordinate (bonds)		1

Question Number	Correct Answer		Reject	Mark
17 (c)(iii)	Any two from:	ntly		2
	Chromium atoms/ ions are covale bonded/bonded to each other	iiiiy		
	OR			
	Two (chromium) ions/ chromium atoms in the complex			
		(1)		
	Each ethanoate ligand forms bond two different atoms/ ions	ds to (1)		
	Ethanoate ions are not normally bidentate ligands	(1)		
	ALLOW Contains both monodentate and		Just "two	
	bidentate ligands	(1)	different ligands"	
	Allow six ligands and complex no octahedral		ngarius	

Question Number	Correct Answer		Reject	Mark
17 (c)(iv)	The energies of the d electron level are split to different extents (by different ligands) ALLOW	els		2
	d-d (orbitals) splitting is different OR d-d transitions are different	(1)		
	So different energy/ frequency/ wavelength light absorbed	(1)	(just) transmitted	

Mark
2

Question	Correct Answer		Reject	Mark
Number 17(d)	First mark Dilution factor:			5
	moles of chromium(II) ethanoate in 25.0 cm ³ = $\frac{2.66 \times 10^{-3}}{10}$ = 2.66 x 10^{-4}	(1)		
	Second mark Ratio of manganate(VII) to chromium			
	4 mol manganate(VII) react with 5 mol of chromium (II)			
	OR			
	8 mol mangante(VII) react with 5 mol of chromium(II) ethanoate ((1)		
	Third mark moles of manganate(VII) ion = $\frac{4 \times 5.32 \times 10^{-4}}{5}$ OR $\frac{8 \times 2.66 \times 10^{-4}}{5}$ = 4.256×10^{-4}	(1)		
	Fourth mark Volume of manganate(VII) solution $= \underbrace{4.256 \times 10^{-4}}_{0.00750} \times 1000$ $= 56.75 \text{ cm}^{3}$	(1)		
	Correct answer no working (4)			
	28.375 cm ³ gets (3)			
	Fifth mark This is unsuitable/ inaccurate because it requirefilling the burette hence increasing burette en			
	OR			
	Better to use more concentrated potassium manganate(VII) OR less chromium ethanoate	(1)		

(Total for Question 17 = 21 marks)

Question Number	Acceptable Answer		Reject	Mark
18 (a)(i)	[Cu(H ₂ O) ₆] ²⁺ ALLOW [Cu(H ₂ O) ₄] ²⁺	(1)	Cu ²⁺ (aq)	3
	Cu(H ₂ O) ₄ (OH) ₂ ALLOW Cu(OH) ₂	(1)		
	[Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺ ALLOW [Cu(NH ₃) ₄] ²⁺	(1)	[Cu(NH ₃) ₆] ²⁺	
	ALLOW Ligand in any order Omission of square brackets			

Question Number	Acceptable Answer	Reject	Mark
18 (a)(ii)	(3)d orbitals / (3)d subshell split (by the attached ligands) (1)	Orbital / shell / subshells split d—d splitting	4
	Electrons are promoted (from lower to higher energy d orbital(s) / levels) OR Electrons move from lower to higher energy (d orbital(s) / levels) ALLOW d—d transitions occur /electrons are excited (1)		
	Absorbing energy /photons of a certain frequency (in the visible region) ALLOW Absorbing light (1)		
	Reflected / transmitted / remaining light is coloured / in the visible region	Emitted	
	ALLOW Complementary colour seen Reflected / transmitted / remaining light / frequency is seen (1)	'Reverse' for 'complementary'	
	Penalise omission of (3)d once only. Ignore reference to electrons relaxing / dropping to the ground state		

Question Number	Acceptable Answer	Reject	Mark
18 (a)(iii)	The (different) ligands split the (3)d orbitals / subshell to a different extent (1)	Orbital / shell / subshells unless penalised in 22(a)(ii)	2
	(So) the energy absorbed / reflected / transmitted is different OR Radiation (ALLOW light) is at a different frequency (1)	Emitted unless penalised in 22(a)(ii)	

Question Number	Acceptable Answer	Reject	Mark
18 (b)	Any 5 of the following:		5
	Step 1: Minimum amount of solvent to minimise the amount of solid complex left in solution (when it recrystallizes) ALLOW To form a saturated solution (of C) OR So the solution is as concentrated as possible (1)		
	Step 2: (hot) So maximum amount / most of complex remains in (hot) solution OR To avoid the premature formation the crystals in the funnel (filter) To remove insoluble / undissolved impurities (1)		
	Step 3: To ensure that maximum amount of solid crystallizes ALLOW To obtain a better yield (of crystals) (1)	Speed up crystallization	
	Step 4: To remove soluble /dissolved impurities (1) So that the filtered solid is dry	Remove insoluble impurities	
	30 that the intered solid is dry		
	ALLOW So that filtration is fast (1)	10 14	

Total for Question 18 = 14 marks