Transition Metal Basics

Mark Scheme

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	Transition Metals \& Organic Nitrogen Chemistry
Sub Topic	Transition Metal Basics
Booklet	Mark Scheme

Time Allowed:	86 minutes
Score:	$/ 71$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{2}$	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{3}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{4}$	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{5}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{6}$	C		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{7}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{8}$	C		1
Question Number Correct Answer Reject Mark $\mathbf{9}$ B 1			

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1}$ B		$\mathbf{1}$	

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 3}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 4}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 5}$	A		$\mathbf{1}$

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 (a) (i i)}$	If name and formula are given, both must be correct		
	$\mathbf{X}=$ (aqueous) ammonia / $\mathrm{NH}_{3}(\mathrm{aq})$ ALLOW $\mathrm{NH}_{3} /$ ammonium hydroxide (1) $\mathbf{Y =}$ potassium iodide / KI ALLOW other soluble iodides IGNORE references to concentration	$\mathbf{X}=\mathrm{NaOH}$	iodide / I- KI and acid HI

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 (a) (i i i)}$	(Product is) ethanoic acid $/ \mathrm{CH}_{3} \mathrm{COOH} /$ ethanoate(ions) $/ \mathrm{CH}_{3} \mathrm{COO}^{-} \quad(1)$ IGNORE carboxylic Ethanal is a reducing agent / reduces Cu^{2+} Stand alone marks IGNORE references to oxidation of ethanol products of reduction (e.g. Cu)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 (a) (i v)}$	(Iodine is formed quantitatively and is determined by) titration against sodium thiosulfate solution (of known concentration)	Colorimetry	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 (b) (i)}$	(3)d orbitals / (3)d subshell split (by the (1) attached ligands) Electrons are promoted (from lower to higher energy d orbital(s) / levels) OR Electrons move from lower to higher split energy d orbital(s) / levels) ALLOW d-d transitions occur		
	Absorbing energy /photons of a certain frequency (in the visible region) ALLOW Absorbing light Reflected / transmitted / remaining light is coloured / yellow / in the visible region ALLOW (1) Complementary colour seen Reflected / transmitted / remaining light / frequency is seen Penalise omission of (3)d once only. Ignore reference to electrons relaxing / dropping to the ground state		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 (b) (i i)}$	Colour depends on the frequency /wavelength /energy of the absorbed (1) light		
Different ligands split the d orbitals to a different extent		$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 (c) (i)}$	$2 \mathrm{Cu}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq})$ ALLOW reversible arrows Electrons		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 (c) (i i)}$	The copper(I) is oxidized to copper(II) and (in the same reaction) reduced to copper((0))		
OR Copper changes from +1 to 0 and +2	IGNORE Reference to a Cu atom		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
16(c)(iii)	Relevant reduction potentials are $\begin{aligned} & \mathrm{Cu}^{2+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Cu}^{+} \mathrm{E}^{\ominus}=+0.15(\mathrm{~V}) \\ & \mathrm{Cu}^{+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Cu} \mathrm{E}^{\ominus}=+0.52(\mathrm{~V}) \end{aligned}$ ALLOW single arrows $\begin{equation*} \mathrm{E}_{\text {cell }}^{\ominus}=0.52-0.15=(+) 0.37(\mathrm{~V}) \tag{1} \end{equation*}$ TE on incorrect E^{\ominus} values providing E^{\ominus} cell is positive ($\mathrm{E}^{\circ}{ }_{\text {cell }}$ positive so reaction thermodynamically favourable)		2

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 7 (a) (i)}$	$3 d^{5} 4 s^{1}$		
	$/ 4 s^{1} 3 d^{5}$		1
	ALLOW		
	Complete configuration $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{5}$		
	ALLOW		
	Capitals and subscripts		

Question Number	Correct Answer	Reject	Mark
$\begin{aligned} & 17 \\ & \text { (a) (ii) } \end{aligned}$	It is $4 s^{1}$ rather than $4 s^{2}$ because with two of the reasons below $3 d^{5} /$ half- filled $3 d$ sub shell is particularly stable The paired electrons repel All six electrons are in separate orbitals (minimizing repulsion) ALLOW The energy required to promote/ transfer 4s to 3 d is small OR The energy difference between 4 s and $3 d$ is small		2

www.igexams.com

Question Number	Correct Answer	Reject	Mark
17(b)(i)	$\begin{aligned} & \left(\mathrm{E}^{\ominus} \mathrm{Zn}^{2+}(\mathrm{aq}) \mid \mathrm{Zn}(\mathrm{~s})=-0.76 \mathrm{~V}\right. \\ & \mathrm{E}^{\ominus} \mathrm{Cr}^{3+}(\mathrm{aq}), \mathrm{Cr}^{2+}(\mathrm{aq}) \mid \mathrm{Pt}=-0.41 \mathrm{~V} \\ & \mathrm{E}^{\ominus}\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+7 \mathrm{H}^{+}(\mathrm{aq})\right], \\ & \left.\left[2 \mathrm{Cr}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})\right] \mid \mathrm{Pt}=+1.33 \mathrm{~V}\right) \end{aligned}$ If no other mark is scored, data scores (1) however shown Calculation of E^{\ominus} cell values: $\mathrm{E}^{\ominus}{ }_{\text {cell }}$ for first step $=$ $\begin{equation*} 1.33--0.76=(+) 2.09(\mathrm{~V}) \tag{1} \end{equation*}$ $\mathrm{E}^{\ominus}{ }_{\text {cell }}$ for second step $=$ $\begin{equation*} -0.41--0.76=(+) 0.35(\mathrm{~V}) \tag{1} \end{equation*}$ As (both) values are positive, (both) reactions are spontaneous/feasible Third mark is independent		3

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 7 (b) (i i)}$	Orange to green to blue IGNORE qualifying words eg pale blue		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 7}$	The small amount of hydrogen (b)(iii) produced (does not present a serious risk)		1
ALLOW "Less" for small amount Indication of ventilation			

www.igexams.com

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 7 (c) (i)}$	It is bridging/ bidentate ligand	Polydentate	1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 7 (c) (i i)}$	Dative (covalent) (bonds)/ co-ordinate (bonds)	1	

Question Number	Correct Answer	Reject	Mark
$\begin{aligned} & 17 \\ & \text { (c) (iii) } \end{aligned}$	Any two from: Chromium atoms/ ions are covalently bonded/bonded to each other OR Two (chromium) ions/ chromium atoms in the complex Each ethanoate ligand forms bonds to two different atoms/ ions Ethanoate ions are not normally bidentate ligands ALLOW Contains both monodentate and bidentate ligands Allow six ligands and complex not octahedral	Just "two different ligands"	2

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 7}$ $\mathbf{(c) (i v) ~}$	The energies of the d electron levels are split to different extents (by different ligands)		2
	ALLOW d-d (orbitals) splitting is different OR d-d transitions are different	(1)	
So different energy/ frequency/ wavelength light absorbed	(1)	(...(just) transmitted	

www.igexams.com

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 7 (c) (v)}$	There are two peaks as two different hydrogen environments (1)		2
	ElTHER The areas due to hydrogen in water molecules compared to hydrogen in ethanoate ions is in the ratio 1 to 3/ 4 to 12 OR As there are 4 hydrogen atoms in water and 12 hydrogen atoms in ethanoate ions		

Question Number	Correct Answer	Reject	Mark
17(d)	First mark Dilution factor: moles of chromium (II) ethanoate in $25.0 \mathrm{~cm}^{3}$ $\begin{equation*} =\frac{2.66 \times 10^{-3}}{10}=2.66 \times 10^{-4} \tag{1} \end{equation*}$ Second mark Ratio of manganate(VII) to chromium 4 mol manganate(VII) react with 5 mol of chromium (II) OR 8 mol mangante(VII) react with 5 mol of chromium(II) ethanoate Third mark moles of manganate(VII) ion $\begin{align*} & =\frac{4 \times 5.32 \times 10^{-4}}{5} \text { OR } \frac{8 \times 2.66 \times 10^{-4}}{5} \\ & =4.256 \times 10^{-4} \tag{1} \end{align*}$ Fourth mark Volume of manganate(VII) solution $\begin{align*} & =\frac{4.256 \times 10^{-4}}{0.00750} \times 1000 \\ & =56.75 \mathrm{~cm}^{3} \tag{1} \end{align*}$ Correct answer no working (4) $28.375 \mathrm{~cm}^{3}$ gets (3) Fifth mark This is unsuitable/ inaccurate because it requires refilling the burette hence increasing burette error OR Better to use more concentrated potassium manganate(VII) OR less chromium ethanoate		5

(Total for Question 17 = 21 marks)

Question Number	Acceptable Answer	Reject	Mark	
$\mathbf{1 8 (a) (i)}$	$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ $\mathrm{ALLOW}\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$ $\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}$ $\mathrm{ALLOW} \mathrm{Cu}(\mathrm{OH})_{2}$	(1)	$\mathrm{Cu}^{2+}(\mathrm{aq)}$	3
	$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ ALLOW $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$	(1)		
ALLOW Ligand in any order Omission of square brackets	$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$			

Question Number	Acceptable Answer	Reject	Mark
18(a)(ii)	(3)d orbitals / (3)d subshell split (by the attached ligands) Electrons are promoted (from lower to higher energy d orbital(s) / levels) OR Electrons move from lower to higher energy (d orbital(s) / levels) ALLOW d-d transitions occur /electrons are excited (1) Absorbing energy /photons of a certain frequency (in the visible region) ALLOW Absorbing light Reflected / transmitted / remaining light is coloured / in the visible region ALLOW Complementary colour seen Reflected / transmitted / remaining light / frequency is seen Penalise omission of (3)d once only. Ignore reference to electrons relaxing / dropping to the ground state	Orbital / shell / subshells split d-d splitting Emitted 'Reverse' for 'complementary'	4

Question Number	Acceptable Answer	Reject	Mark
18(a)(iii)	The (different) ligands split the (3)d orbitals / subshell to a different extent	Orbital / shell / subshells unless penalised in 22(a)(ii)	2
	(So) the energy absorbed / reflected ltransmitted is different OR	Emitted unless Radiation (ALLOW light) is at a penalised in different frequency	(1)

Total for Question 18 = 14 marks

