# Reactions and Applications of Transition Metals 

## Mark Scheme 2

| Level | International A Level |
| :--- | :--- |
| Subject | Chemistry |
| Exam Board | Edexcel |
| Topic | Transition Metals \& Organic Nitrogen Chemistry |
| Sub Topic | Reactions and Applications of Transition Metals |
| Booklet | Mark Scheme 2 |


| Time Allowed: | 69 minutes |
| :--- | :---: |
| Score: | $/ 57$ |
| Percentage: | $/ 100$ |

Grade Boundaries:

| A* | A | B | C | D | E | U |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $>85 \%$ | $77.5 \%$ | $70 \%$ | $62.5 \%$ | $57.5 \%$ | $45 \%$ | $<45 \%$ |

## www.igexams.com

| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 ( a ) ( i )}$ | In 21(a) <br> IGNORE <br> State symbols even if incorrect <br>  <br> cancelled e $\left.\mathrm{e}^{(-)}\right)$ | Electrons <br> omitted |  |
|  | $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{(-)} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{E}^{\ominus}=1.51 \mathrm{~V}\right)$ <br> OR <br> Multiples <br> ALLOW reversible and double headed arrows |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 ( a ) ( i i )}$ | $\mathrm{H}_{2} \mathrm{O} \rightarrow 1 / 2 \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{(-)}\left(\mathrm{E}^{\theta}=1.23 \mathrm{~V}\right)$ <br> OR <br> Multiples | Electrons <br> omitted |  |
|  | ALLOW <br> reversible and double headed arrows Equation <br> reversed <br> $\mathrm{H}_{2} \mathrm{O}-2 \mathrm{e}^{(-)} \rightarrow 1 / 2 \mathrm{O}_{2}+2 \mathrm{H}^{+}$ |  | $\mathbf{1}$ |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 1(a)(iii) | $4 \mathrm{MnO}_{4}^{-}+12 \mathrm{H}^{+} \rightarrow 4 \mathrm{Mn}^{2+}+5 \mathrm{O}_{2}+6 \mathrm{H}_{2} \mathrm{O}$ OR $2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+5 / 2 \mathrm{O}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ <br> ALLOW <br> reversible and double headed arrows other multiples uncancelled $\mathrm{H}^{+}$and $\mathrm{H}_{2} \mathrm{O}$ <br> TE only on $\mathrm{MnO}_{4}{ }^{-} \mid \mathrm{MnO}_{4}{ }^{2-}$ in (a)(i): $\underset{2 \mathrm{H}^{+}}{2 \mathrm{MnO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{MnO}_{4}^{2-}+1 / 2 \mathrm{O}_{2}+}$ | Uncancelled $\mathrm{e}^{(-)}$ | 1 |

## www.igexams.com

| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 1(a)(iv) | $\mathrm{E}_{\text {cell }}^{\ominus}=1.51-1.23=(+) 0.28(\mathrm{~V})$ <br> ALLOW <br> TE <br> on $\mathrm{E}_{\text {cell }}=-0.67(\mathrm{~V})$ derived from using $\mathrm{MnO}_{4}{ }^{-} \mid \mathrm{MnO}_{4}{ }^{2-}$ <br> if correct equation in (a)(iii) is reversed <br> (1) <br> $\mathrm{E}^{\ominus}{ }_{\text {cell }}$ is positive <br> so reaction is (thermodynamically) <br> feasible / manganate(VII) oxidizes the water / water reduces manganate(VII) <br> ALLOW <br> so thermodynamically spontaneous <br> so reaction goes / possible <br> so $\mathrm{MnO}_{4}^{-}$unstable <br> (1) <br> No TE on negative $E^{\ominus}$ cell unless correct equation in (a)(iii) is reversed. | Just 'reaction goes' | 2 |

## www.igexams.com

| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 1(b) (i) | Distilled / deionised water need only be mentioned once. <br> Dissolve solid in (a suitable volume (< $150 \mathrm{~cm}^{3}$ ) of) distilled / deionised water / dilute sulfuric acid in a beaker <br> Transfer solution to a volumetric / <br> graduated flask <br> add washings <br> Make up to mark / $250 \mathrm{~cm}^{3}$ and mix <br> Preparing the solution in the volumetric flask max 2 (MP2 and MP4) <br> ALLOW <br> Any indication of mixing (e.g. swirl / invert) | Just 'water' conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ conical flask <br> Just 'flask' | 4 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 ( b ) ( i i )}$ | colourless /pale yellow to (first <br> permanent pale) pink | purple to pink <br> Purple / mauve | $\mathbf{1}$ |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 ( b ) ( \text { iii) }}$ | $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{Fe}^{2+}$ <br> $\rightarrow \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$ | Uncancelled e ${ }^{(-)}$ |  |
|  | ALLOW <br> multiples <br> reversible and double headed <br> arrows <br> IGNORE state symbols even if |  |  |
| incorrect |  | $\mathbf{1}$ |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 1(b)(iv) | Check the method: <br> If the method is based on $\left[\mathrm{MnO}_{4}^{-}\right.$] being less than $0.02 \mathrm{~mol} \mathrm{dm}^{-3}$ then correct answer with some working scores full marks. <br> $\% \mathrm{MnO}_{4}^{-}$remaining $=98.6855$ (\%) with some correct working scores 3 <br> Correct answer (1.31449 (\%)) with no working scores 3 <br> Calculation of the \% of the Mohr's salt that has reacted before the titration (assumes $\left[\mathrm{MnO}_{4}{ }^{-}\right.$] $=0.02 \mathrm{~mol} \mathrm{dm}^{-3}$ ) gives (about) the same value and scores max 3 <br> Example of fully correct method $\begin{align*} \text { Mol } \mathrm{Fe}^{2+} \text { in } 25 \mathrm{~cm}^{3} & =(10 / 392) \times(25 / 250)  \tag{1}\\ & =2.55102 \times 10^{-3}(*) \end{align*}$ $\begin{align*} & \mathrm{Mol} \mathrm{MnO}_{4}^{-} \text {in } 25.85 \mathrm{~cm}^{3}=\text { Answer } * / 5  \tag{1}\\ & =2.55102 \times 10^{-3} / 5=5.10204 \times 10^{-4}(* *) \end{align*}$ $\begin{align*} \text { Conc }^{\mathrm{n}} \text { of } \mathrm{MnO}_{4}^{-} & =1000 \times \text { Answer } * * / 25.85 \\ & =0.019737 \mathrm{~mol} \mathrm{dm}^{-3}(* * *) \tag{1} \end{align*}$ <br> \% reacted prior to the titration $=100 \times(0.02-\text { Answer } * * *) / 0.02$ $=100 \times(0.02-0.019737) / 0.02$ $\begin{equation*} =1.31449 \text { (\%) } \tag{1} \end{equation*}$ <br> TE at each stage in the calculation unless conc ${ }^{\mathrm{n}} \mathrm{MnO}_{4}^{-}$remaining greater than 0.02 (so \% reacted negative) when max 2 |  |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 1(b)(iv) continued | A common incorrect calculation is <br> $\mathrm{Mol} \mathrm{MnO}_{4}^{-}$in $25.85 \mathrm{~cm}^{3}=25.85 \times 0.02 / 1000$ $\begin{equation*} =5.17 \times 10^{-4} \tag{0} \end{equation*}$ <br> Mol Fe ${ }^{2+}$ in $25 \mathrm{~cm}^{3}=5 \times 5.17 \times 10^{-4}$ $\begin{equation*} =2.585 \times 10^{-3} \tag{1} \end{equation*}$ $\begin{aligned} \text { Mol Fe } \end{aligned}$ <br> Then <br> Actual $\mathrm{mol} \mathrm{Fe}^{2+}$ in $250 \mathrm{~cm}^{3}$ $=10 / 392=2.551 \times 10^{-2}$ $\text { Difference }=2.585 \times 10^{-2}-2.551 \times 10^{-2}$ $=0.034 \times 10^{-2}$ <br> OR <br> Mass of Mohr's salt $=392 \times 2.585 \times 10^{-2}$ $=10.1332 \mathrm{~g}$ <br> so difference $=10.1332-10$ $\begin{equation*} =0.1332 \mathrm{~g} \tag{1} \end{equation*}$ $\begin{align*} \text { Percentage } & =100 \times 0.034 \times 10^{-2} / 2.585 \times 10^{-2} \\ & =1.3153 \tag{1} \end{align*}$ <br> Where the calculation breaks down, marks <br> may often be possible for <br> MP1 ( $\mathrm{mol} \mathrm{Fe}{ }^{2+}$ in $25 \mathrm{~cm}^{3}$ ) <br> MP2 (using 5:1 reacting ratio for $\mathrm{Fe}^{2+}: \mathrm{MnO}_{4}^{-}$) <br> Ignore SF except 1 SF | 1.3333 |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 2(a)(i) | If name and formula are given, both must be correct <br> $\mathbf{A}=\operatorname{copper}(\mathrm{II})$ chloride $/ \mathrm{CuCl}_{2}$ <br> $\mathbf{B}=$ tetrachlorocuprate(II) (ion) $/ \mathrm{CuCl}_{4}{ }^{2-}$ <br> ALLOW <br> $\mathbf{B}=$ trichlorocuprate(II) $/ \mathrm{CuCl}_{3}^{-}$ <br> $\mathbf{C}=\operatorname{copper}(\mathrm{II})$ hydroxide $/ \mathrm{Cu}(\mathrm{OH})_{2} /$ <br> $\mathrm{Cu}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ <br> D = tetraamminecopper(II) (ion) / <br> $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+} / \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}$ <br> $\mathbf{E}=\operatorname{copper}(\mathrm{I})$ oxide $/ \mathrm{Cu}_{2} \mathrm{O}$ <br> $\mathbf{F}=$ iodine $/ \mathrm{I}_{2} /$ triiodide (ion) $/ \mathrm{I}_{3}{ }^{-} / \mathrm{KI}_{3}$ <br> IGNORE <br> state symbols even if incorrect. <br> correct oxidation numbers with formula. <br> order of the ligands. | $\mathbf{B}=\mathrm{CuCl}_{2}$ |  |
|  |  |  | 6 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 2(a)(ii) | If name and formula are given, both must be correct <br> $\mathbf{X}=$ (aqueous) ammonia $/ \mathrm{NH}_{3}(\mathrm{aq})$ <br> ALLOW <br> $\mathrm{NH}_{3}$ / ammonium hydroxide <br> $\mathbf{Y}=$ potassium iodide / KI <br> ALLOW <br> other soluble iodides <br> IGNORE references to concentration | $\begin{equation*} \mathbf{X}=\mathrm{NaOH} \tag{1} \end{equation*}$ <br> iodide / I- <br> KI and acid HI | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{2 ( a ) ( \text { iii) }}$ | (Product is) ethanoic acid / $\mathrm{CH}_{3} \mathrm{COOH} /$ <br> ethanoate( ions) / $\mathrm{CH}_{3} \mathrm{COO}^{-} \quad$ (1) <br> IGNORE carboxylic |  |  |
|  | Ethanal is a reducing agent / reduces <br> $\mathrm{Cu}^{2+}$ <br> Stand alone marks |  |  |
|  | IGNORE <br> references to oxidation of ethanol <br> products of reduction (e.g. Cu) |  | $\mathbf{2}$ |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{2 ( a ) ( i v )}$ | (Iodine is formed quantitatively and is <br> determined by) titration against sodium <br> thiosulfate solution (of known <br> concentration) | Colorimetry |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :---: | :--- | :--- | :--- |
| 2(b)(i) | (3)d orbitals / (3)d subshell split (by the (1) <br> attached ligands) | Orbital / <br> shell is split |  |
|  | Electrons are promoted (from lower to <br> higher energy d orbital(s) / levels) <br> OR <br> Electrons move from lower to higher <br> energy d orbital(s) / levels) <br> ALLOW <br> d-d transitions occur |  |  |
|  | Absorbing energy /photons of a certain <br> frequency (in the visible region) <br> ALLOW <br> Absorbing light | Reflected / transmitted / remaining light is <br> coloured / yellow / in the visible region | ALLOW (1) <br> Complementary colour seen <br> Reflected / transmitted / remaining light / <br> frequency is seen |
| Penalise omission of (3)d once only. <br> Ignore reference to electrons relaxing / <br> dropping to the ground state |  | $\mathbf{4}$ |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{2 ( b ) ( i i )}$ | Colour depends on the frequency <br> /wavelength /energy of the absorbed <br> light |  |  |
| Different ligands split the d orbitals to <br> a different extent |  | $\mathbf{2}$ |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :---: | :--- | :--- | :---: |
| $\mathbf{2 ( c ) ( i )}$ | $2 \mathrm{Cu}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq})$ <br> ALLOW <br> reversible arrows <br> Electrons |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{2 ( c ) ( i i )}$ | The copper(I) is oxidized to <br> copper(II) and (in the same reaction) <br> reduced to copper((0)) <br> OR <br> Copper changes from +1 to 0 and +2 |  |  |
| IGNORE <br> Reference to a Cu atom |  | $\mathbf{1}$ |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 2(c)(iii) | Relevant reduction potentials are $\begin{aligned} & \mathrm{Cu}^{2+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Cu}^{+} \mathrm{E}^{\ominus}=+0.15(\mathrm{~V}) \\ & \mathrm{Cu}^{+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Cu} \mathrm{E}^{\ominus}=+0.52(\mathrm{~V}) \end{aligned}$ <br> ALLOW single arrows $\begin{equation*} \mathrm{E}_{\mathrm{cell}}^{\ominus}=0.52-0.15=(+) 0.37(\mathrm{~V}) \tag{1} \end{equation*}$ <br> TE on incorrect $E^{\ominus}$ values providing $E^{\ominus}{ }_{\text {cell }}$ is positive <br> ( $E^{\circ}{ }_{\text {cell }}$ positive so reaction thermodynamically favourable) |  | 2 |

## www.igexams.com

| Question Number | Correct Answer | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 3(a)(i) | $\begin{aligned} & 3 d^{5} 4 s^{1} \\ & / 4 s^{1} 3 d^{5} \end{aligned}$ <br> ALLOW <br> Complete configuration $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{5}$ <br> ALLOW <br> Capitals and subscripts |  | 1 |
| Question Number | Correct Answer | Reject | Mark |
| 3 <br> (a)(ii) | It is $4 s^{1}$ rather than $4 s^{2}$ because with two of the reasons below <br> $3 d^{5} /$ half-filled $3 d$ sub shell is particularly stable <br> The paired electrons repel <br> All six electrons are in separate orbitals (minimizing repulsion) <br> ALLOW <br> The energy required to promote/ transfer 4 s to 3 d is small OR <br> The energy difference between 4 s and $3 d$ is small |  | 2 |

## www.igexams.com

| Question Number | Correct Answer | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 3(b)(i) | $\begin{aligned} & \left(\mathrm{E}^{\ominus} \mathrm{Zn}^{2+}(\mathrm{aq}) \mid \mathrm{Zn}(\mathrm{~s})=-0.76 \mathrm{~V}\right. \\ & \mathrm{E}^{\ominus} \mathrm{Cr}^{3+}(\mathrm{aq}), \mathrm{Cr}^{2+}(\mathrm{aq}) \mid \mathrm{Pt}=-0.41 \mathrm{~V} \\ & \mathrm{E}^{\ominus}\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+7 \mathrm{H}^{+}(\mathrm{aq})\right], \\ & \left.\left[2 \mathrm{Cr}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})\right] \mid \mathrm{Pt}=+1.33 \mathrm{~V}\right) \end{aligned}$ <br> If no other mark is scored, data scores (1) however shown <br> Calculation of $E^{\ominus}$ cell values: <br> $E^{\ominus}{ }_{\text {cell }}$ for first step $=$ $\begin{equation*} 1.33--0.76=(+) 2.09(\mathrm{~V}) \tag{1} \end{equation*}$ <br> $E^{\ominus}{ }_{\text {cell }}$ for second step $=$ $\begin{equation*} -0.41--0.76=(+) 0.35(\mathrm{~V}) \tag{1} \end{equation*}$ <br> As (both) values are positive, (both) reactions are spontaneous/feasible <br> Third mark is independent |  | 3 |


| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3 ( b ) ( i i )}$ | Orange to green to blue <br> IGNORE qualifying words eg pale blue |  | 1 |


| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (b)(iii) | The small amount of hydrogen <br> produced (does not present a serious <br> risk) |  | 1 |
|  | ALLOW <br> "Less" for small amount <br> Indication of ventilation |  |  |


| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3 ( c ) ( i )}$ | It is bridging/ bidentate ligand | Polydentate | 1 |


| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3 ( c ) ( i i )}$ | Dative (covalent) (bonds)/ <br> co-ordinate (bonds) | 1 |  |


| Question Number | Correct Answer | Reject | Mark |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 3 \\ & (c)(i i i) \end{aligned}$ | Any two from: <br> Chromium atoms/ ions are covalently bonded/bonded to each other <br> OR <br> Two (chromium) ions/ chromium atoms in the complex <br> Each ethanoate ligand forms bonds to two different atoms/ ions <br> Ethanoate ions are not normally bidentate ligands <br> ALLOW <br> Contains both monodentate and bidentate ligands <br> Allow six ligands and complex not octahedral | Just "two different ligands" | 2 |


| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3}$ (c)(iv) | The energies of the d electron levels <br> are split to different extents (by <br> different ligands) | ALLOW <br> d-d (orbitals) splitting is different | OR <br> d-d transitions are different |
| So different energy/ frequency/ (1) <br> wavelength light absorbed | (1) | (...(just) <br> transmitted |  |

## www.igexams.com

| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3 ( c ) ( v )}$ | There are two peaks as two different <br> hydrogen environments (1) |  | 2 |
|  | ElTHER <br> The areas due to hydrogen in water <br> molecules compared to hydrogen in <br> ethanoate ions is in the ratio 1 to 3/ <br> 4 to 12 <br> OR <br> As there are 4 hydrogen atoms in <br> water and 12 hydrogen atoms in <br> ethanoate ions |  |  |


| Question Number | Correct Answer | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 3(d) | First mark <br> Dilution factor: <br> moles of chromium(II) ethanoate in $25.0 \mathrm{~cm}^{3}$ $\begin{equation*} =\frac{2.66 \times 10^{-3}}{10}=2.66 \times 10^{-4} \tag{1} \end{equation*}$ <br> Second mark <br> Ratio of manganate(VII) to chromium <br> 4 mol manganate(VII) react with 5 mol of chromium (II) <br> OR <br> 8 mol mangante(VII) react with 5 mol of chromium(II) ethanoate <br> Third mark <br> moles of manganate(VII) ion $\begin{align*} & =\frac{4 \times 5.32 \times 10^{-4}}{5} \text { OR } \frac{8 \times 2.66 \times 10^{-4}}{5} \\ & =4.256 \times 10^{-4} \tag{1} \end{align*}$ <br> Fourth mark <br> Volume of manganate(VII) solution $\begin{align*} & =\frac{4.256 \times 10^{-4}}{0.00750} \times 1000 \\ & =56.75 \mathrm{~cm}^{3} \tag{1} \end{align*}$ <br> Correct answer no working (4) $28.375 \mathrm{~cm}^{3} \text { gets (3) }$ <br> Fifth mark <br> This is unsuitable/ inaccurate because it requires refilling the burette hence increasing burette error <br> OR <br> Better to use more concentrated potassium manganate(VII) OR less chromium ethanoate |  | 5 |

(Total for Question 3 = 21 marks)

