Reactions and Applications of Transition Metals

Mark Scheme 2

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Торіс	Transition Metals & Organic Nitrogen Chemistry
Sub Topic	Reactions and Applications of Transition Metals
Booklet	Mark Scheme 2

Time Allowed:	69 minutes
Score:	/57
Percentage:	/100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question Number	Acceptable Answers	Reject	Mark
1(a)(i)	In 21(a) IGNORE State symbols even if incorrect Working in half equations (e.g. multipliers & cancelled $e^{(-)}$) MnO ₄ ⁻ + 8H ⁺ + 5 $e^{(-)}$ → Mn ²⁺ + 4H ₂ O(E^{e} =1.51V) OR Multiples	Electrons omitted	
	ALLOW reversible and double headed arrows		1

Question Number	Acceptable Answers	Reject	Mark
1(a)(ii)	$H_2O \rightarrow \frac{1}{2}O_2 + 2H^+ + 2e^{(-)} (E^e = 1.23V)$ OR Multiples ALLOW	Electrons omitted	
	reversible and double headed arrows Equation reversed $H_2O - 2e^{(-)} \rightarrow \frac{1}{2}O_2 + 2H^+$		1

Question Number	Acceptable Answers	Reject	Mark
1 (a) (iii)	$4MnO_4^- + 12H^+ \rightarrow 4Mn^{2+} + 5O_2 + 6H_2O$ OR $2MnO_4^- + 6H^+ \rightarrow 2Mn^{2+} + 5/2O_2 + 3H_2O$ ALLOW reversible and double headed arrows other multiples uncancelled H ⁺ and H_2O TE only on MnO_4^- MnO_4^{2-} in (a)(i): $2MnO_4^- + H_2O \rightarrow 2MnO_4^{2-} + \frac{1}{2}O_2 + \frac{1}{2}O_2$	Uncancelled e ⁽⁻⁾	
	2H ⁺		1

Question Number	Acceptable Answers	Reject	Mark
1(a)(iv)	$E_{cell}^{9} = 1.51 - 1.23 = (+)0.28 (V)$ ALLOW TE on $E_{cell}^{9} = -0.67 (V)$ derived from using MnO ₄ ⁻ MnO ₄ ²⁻ if correct equation in (a)(iii) is reversed (1)		
	<i>E</i> ^e _{cell} is positive so reaction is (thermodynamically) feasible / manganate(VII) oxidizes the water / water reduces manganate(VII)		
	ALLOW so thermodynamically spontaneous so reaction goes / possible so MnO ₄ ⁻ unstable (1)	Just 'reaction goes'	
	No TE on negative E^{e}_{cell} unless correct equation in (a)(iii) is reversed.		2

Question Number	Acceptable Answers	Reject	Mark
1(b)(i)	Distilled / deionised water need only be mentioned once.		
	Dissolve solid in (a suitable volume (< 150 cm ³) of) distilled / deionised water / dilute sulfuric acid in a beaker (1)	Just 'water' conc H ₂ SO ₄ conical flask	
	Transfer solution to a volumetric / graduated flask(1) (1) add washings(1) (1)Make up to mark / 250 cm³ and mix(1)	Just `flask'	
	Preparing the solution in the volumetric flask max 2 (MP2 and MP4)		
	ALLOW Any indication of mixing (e.g. swirl / invert)		4

Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	colourless /pale yellow to (first permanent pale) pink	purple to pink Purple / mauve	1

Question Number	Acceptable Answers	Reject	Mark
1 (b) (iii)	$\begin{array}{l} MnO_4^- + 8H^+ + 5Fe^{2+} \\ & \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O \end{array}$ ALLOW multiples reversible and double headed arrows	Uncancelled e ⁽⁻⁾	
	IGNORE state symbols even if incorrect		1

Question Number	Acceptable Answers	Reject	Mark
1(b)(iv)	Check the method:		
	If the method is based on $[MnO_4^-]$ being less than 0.02 mol dm ⁻³ then correct answer with some working scores full marks.		
	% MnO ₄ ⁻ remaining = 98.6855 (%) with some correct working scores 3		
	Correct answer (1.31449 (%)) with no working scores 3		
	Calculation of the % of the Mohr's salt that has reacted before the titration (assumes $[MnO_4^-]$ = 0.02 mol dm ⁻³) gives (about) the same value and scores max 3		
	Example of fully correct method		
	Mol Fe ²⁺ in 25 cm ³ = $(10/392)x(25/250)$ (1) = 2.55102 x 10 ⁻³ (*)		
	Mol MnO ₄ ⁻ in 25.85 cm ³ = Answer */5 (1) = 2.55102 x 10 ⁻³ / 5 = 5.10204 x 10 ⁻⁴ (**)		
	Conc ⁿ of $MnO_4^- = 1000 \text{ x Answer }^{**/25.85}$ = 0.019737 mol dm ⁻³ (***) (1)		
	% reacted prior to the titration = $100 \times (0.02 - \text{Answer ***})/0.02$ = $100 \times (0.02 - 0.019737) / 0.02$		
	= 1.31449 (%) (1)		
	TE at each stage in the calculation unless conc ⁿ MnO_4^- remaining greater than 0.02 (so % reacted negative) when max 2		
	Continued on next page		4

Question Number	Acceptable Answers	Reject	Mark
1(b)(iv) continued	A common incorrect calculation is Mol MnO_4^- in 25.85 cm ³ = 25.85 x 0.02/1000 = 5.17 x10 ⁻⁴ (0)		
	Mol Fe ²⁺ in 25 cm ³ = 5 x 5.17 x10 ⁻⁴ = 2.585 x 10 ⁻³ (1)		
	Mol Fe ²⁺ in 250 cm ³ = 10 x 5 x 5.17 x10 ⁻⁴ = 2.585×10^{-2} Then		
	Actual mol Fe ²⁺ in 250 cm ³ = $10/392 = 2.551 \times 10^{-2}$ Difference = $2.585 \times 10^{-2} - 2.551 \times 10^{-2}$ = 0.034×10^{-2}		
	OR Mass of Mohr's salt = $392 \times 2.585 \times 10^{-2}$ = 10.1332 g		
	so difference = $10.1332 - 10$ = 0.1332 g (1)		
	Percentage = $100 \times 0.034 \times 10^{-2} / 2.585 \times 10^{-2}$ = 1.3153 (1)	1.3333	
	Where the calculation breaks down, marks may often be possible for MP1 (mol Fe ²⁺ in 25 cm ³) MP2 (using 5:1 reacting ratio for Fe ²⁺ : MnO_4^-)		
	Ignore SF except 1 SF		

Total for Question 1 = 15 marks

Question Number	Acceptable Answers		Reject	Mark
2(a)(i)	If name and formula are given, both m be correct	ust		
	$A = copper(II) chloride / CuCl_2$	(1)		
	B = tetrachlorocuprate(II) (ion) / CuCl. ALLOW	2- 4	$\mathbf{B} = CuCl_2$	
	$\mathbf{B} = \text{trichlorocuprate(II) / CuCl}_3$	(1)		
	$ C = copper(II) hydroxide / Cu(OH)_2 / Cu(OH)_2(H_2O)_4 $	(1)		
	D = tetraamminecopper(II) (ion) / Cu(NH3)42+ / Cu(H2O)2(NH3)42+	(1)		
	$\mathbf{E} = \text{copper}(I) \text{ oxide } / \text{Cu}_2\text{O}$	(1)		
	\mathbf{F} = iodine / I_2 / triiodide (ion) / I_3 / K	I ₃ (1)		
	IGNORE state symbols even if incorrect. correct oxidation numbers with formul order of the ligands.	a.		
				6

Question Number	Acceptable Answers	Reject	Mark
2(a)(ii)	If name and formula are given, both must be correct $X = (aqueous) ammonia / NH_3(aq)$ ALLOW NH ₃ / ammonium hydroxide (1)	X = NaOH	
	Y = potassium iodide / KIALLOWother soluble iodidesIGNORE references to concentration	iodide / I [−] KI and acid HI	2

Question Number	Acceptable Answers	Reject	Mark
2(a)(iii)	(Product is) ethanoic acid / CH ₃ COOH / ethanoate(ions) / CH ₃ COO (1) IGNORE carboxylic Ethanal is a reducing agent / reduces Cu ²⁺ (1)		
	Stand alone marks IGNORE references to oxidation of ethanol products of reduction (e.g. Cu)		2

Question Number	Acceptable Answers	Reject	Mark
2(a)(iv)	(Iodine is formed quantitatively and is determined by) titration against sodium thiosulfate solution (of known concentration)	Colorimetry	1

Question	Acceptable Answers	Reject	Mark
Number			
2(b)(i)	(3)d orbitals / (3)d subshell split (by the attached ligands) (1)	Orbital / shell is split	
	Electrons are promoted (from lower to higher energy d orbital(s) / levels) OR		
	Electrons move from lower to higher energy d orbital(s) / levels) ALLOW		
	d—d transitions occur (1)		
	Absorbing energy /photons of a certain frequency (in the visible region) ALLOW		
	Absorbing light (1)		
	Reflected / transmitted / remaining light is coloured / yellow / in the visible region		
	ALLOW Complementary colour seen Reflected / transmitted / remaining light / frequency is seen (1)		
	Penalise omission of (3)d once only. Ignore reference to electrons relaxing / dropping to the ground state		4

Question Number	Acceptable Answers	Reject	Mark
2(b)(ii)	Colour depends on the frequency /wavelength /energy of the absorbed light (1) Different ligands split the d orbitals to a different extent (1)		2

Question Number	Acceptable Answers	Reject	Mark
2(c)(i)	$2Cu^{+}(aq) \rightarrow Cu(s) + Cu^{2+}(aq)$ ALLOW reversible arrows	Electrons	1

Question Number	Acceptable Answers	Reject	Mark
2(c)(ii)	The copper(I) is oxidized to copper(II) and (in the same reaction) reduced to copper((0)) OR Copper changes from +1 to 0 and +2 IGNORE Reference to a Cu atom		1

Question Number	Acceptable Answers		Reject	Mark
2(c)(iii)	Relevant reduction potentials are $Cu^{2+} + e^{-} \Rightarrow Cu^{+} E^{0} = +0.15 (V)$ $Cu^{+} + e^{-} \Rightarrow Cu E^{0} = +0.52 (V)$			
	ALLOW single arrows	(1)		
	$E^{e}_{cell} = 0.52 - 0.15 = (+)0.37 (V)$ TE on incorrect E^{e} values providing E^{e} positive	(1) c _{ell} is		
	(<i>E[°]_{cell} positive so reaction thermodynamically favourable)</i>			2

Total for Question 2 = 21 marks

Question Number	Correct Answer	Reject	Mark
3 (a)(i)	3d ⁵ 4s ¹ /4s ¹ 3d ⁵		1
	ALLOW		
	Complete configuration 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ⁵		
	ALLOW		
	Capitals and subscripts		

Question Number	Correct Answer		Reject	Mark
3 (a)(ii)	It is 4s ¹ rather than 4s ² because with two of the reasons below			2
	3d ⁵ / half-filled 3d sub shell is particularly stable	(1)		
	The paired electrons repel	(1)		
	All six electrons are in separate orbitals (minimizing repulsion)	(1)		
	ALLOW			
	The energy required to promote/ transfer 4s to 3d is small OR The energy difference between 4s 3d is small			

Question Number	Correct Answer	Reject	Mark
	Correct Answer $(E^{e} Zn^{2+}(aq) Zn(s) = -0.76 V$ $E^{e} Cr^{3+}(aq), Cr^{2+}(aq) Pt = -0.41 V$ $E^{e} [Cr_{2}O_{7}^{2-}(aq) + 7H^{+}(aq)],$ $[2Cr^{3+}(aq) + 7H_{2}O(l)] Pt = +1.33 V)$ If no other mark is scored, data scores (1) however shown Calculation of E^{e}_{cell} values: $E^{e}_{cell} \text{ for first step =} $ $1.330.76 = (+)2.09 (V) $ (1) $E^{e}_{cell} \text{ for second step =} $ $-0.410.76 = (+)0.35 (V) $ (1) As (both) values are positive, (both) reactions are spontaneous/feasible (1)	Reject	Mark 3
	Third mark is independent		

Question	Correct Answer	Reject	Mark
Number			
3(b)(ii)	Orange to green to blue		1
	IGNORE qualifying words eg pale blue		

Question Number	Correct Answer	Reject	Mark
3 (b)(iii)	The small amount of hydrogen produced (does not present a serious risk)		1
	ALLOW		
	"Less" for small amount Indication of ventilation		

Question Number	Correct Answer	Reject	Mark
3(c)(i)	It is bridging/ bidentate ligand	Polydentate	1

Question Number	Correct Answer	Reject	Mark
3 (c)(ii)	Dative (covalent) (bonds)/ co-ordinate (bonds)		1

Question Number	Correct Answer		Reject	Mark
3 (c)(iii)	Any two from:			2
	Chromium atoms/ ions are covale bonded/bonded to each other	ntly		
	OR			
	Two (chromium) ions/ chromium atoms in the complex			
		(1)		
	Each ethanoate ligand forms bonc two different atoms/ ions	ls to (1)		
	Ethanoate ions are not normally bidentate ligands	(1)		
	ALLOW Contains both monodentate and bidentate ligands		Just "two different	
	Allow six ligands and complex not octahedral	(1) t (1)	ligands"	

Question Number	Correct Answer		Reject	Mark
3 (c)(iv)	The energies of the d electron leve are split to different extents (by different ligands) ALLOW d-d (orbitals) splitting is different OR d-d transitions are different	els (1)		2
	So different energy/ frequency/ wavelength light absorbed	(1)	(just) transmitted	

Question Number	Correct Answer	Reject	Mark
3(c)(v)	There are two peaks as two different hydrogen environments (1)		2
	The areas due to hydrogen in water molecules compared to hydrogen in ethanoate ions is in the ratio 1 to 3/ 4 to 12 OR		
	As there are 4 hydrogen atoms in water and 12 hydrogen atoms in ethanoate ions (1)		

Question Number	Correct Answer	Reject	Mark
3 (d)	First mark Dilution factor:		5
	moles of chromium(II) ethanoate in 25.0 cm ³ = $\frac{2.66 \times 10^{-3}}{10}$ = 2.66 x 10 ⁻⁴ (1)		
	Second mark Ratio of manganate(VII) to chromium		
	4 mol manganate(VII) react with 5 mol of chromium (II)		
	OR		
	8 mol mangante(VII) react with 5 mol of chromium(II) ethanoate (1)		
	Third mark moles of manganate(VII) ion = $\frac{4 \times 5.32 \times 10^{-4}}{5}$ OR $\frac{8 \times 2.66 \times 10^{-4}}{5}$ = 4.256 x 10 ⁻⁴ (1)		
	Fourth mark Volume of manganate(VII) solution = $\frac{4.256 \times 10^{-4}}{0.00750} \times 1000$ = 56.75 cm ³ (1)		
	Correct answer no working (4)		
	28.375 cm ³ gets (3)		
	Fifth mark This is unsuitable/ inaccurate because it requires refilling the burette hence increasing burette error		
	OR		
	Better to use more concentrated potassium manganate(VII) OR less chromium ethanoate (1)		

(Total for Question **3** = 21 marks)