Reactions and Applications of Transition Metals

Mark Scheme 3

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Торіс	Transition Metals & Organic Nitrogen Chemistry
Sub Topic	Reactions and Applications of Transition Metals
Booklet	Mark Scheme 3

Time Allowed:	71 minutes
Score:	/59
Percentage:	/100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question Number	Acceptable Answers	Reject	Mark
1(a)(i)	Penalise omission of charge on NO ₃ ⁻ only once in (a)(i) and (a)(ii) Penalise an incorrect coefficient in (a)(i) and (a)(ii) once only $Cu^{2+} + 2e^{(-)} \rightarrow Cu$ ($E^{e} = +0.34$ V) (1)		2
	$2NO_{3}^{-} + 4H^{+} + 2e^{(-)}$ $\rightarrow N_{2}O_{4} + 2H_{2}O (E^{\circ} = +0.80 \text{ V})$ ALLOW multiples equations reversed reversible / double-headed arrows 2 NO_{2} for N_{2}O_{4} (1) IGNORE $E^{\circ} \text{ at this point}$ State symbols even if incorrect	Alternative nitrate(V) reductions	

Question Number	Acceptable Answers	Reject	Mark
1(a)(ii)	$Cu + 2NO_3^- + 4H^+ \rightarrow Cu^{2+} + N_2O_4 + 2H_2O_4$	uncancelled electrons	2
	ALLOW multiples reversible / double-headed arrows $2 NO_2$ for N_2O_4 (1)		
	No TE for equation from incorrect half- equations		
	E_{cell}^{9} (= +0.80 - 0.34) = (+)0.46 (V) (1)		
	TE for E^{Θ}_{cell} value on incorrect selection of half-equations		
	IGNORE State symbols even if incorrect		

Question Number	Acceptable Answer	Reject	Mark
1(a)(iii)	Brown fumes / gas OR Green solution	Colourless gas bubbles	1
	ALLOW (pale) yellow fumes / gas OR effervescence / bubbling / fizzing OR blue solution IGNORE modifiers of blue IGNORE References to copper dissolving		

Question Number	Acceptable Answer	Reject	Mark
1(b)(i)	In (b)(i) and (b)(ii) penalise (correct) non-ionic equations once. $Cu^{2+} + 2I^{-} \rightarrow CuI + \frac{1}{2}I_{2}$ OR $2Cu^{2+} + 4I^{-} \rightarrow Cu_{2}I_{2} + I_{2}$ ALLOW $Cu^{2+} + I^{-} \rightarrow Cu^{+} + \frac{1}{2}I_{2}$ OR $2Cu^{2+} + 2I^{-} \rightarrow 2Cu^{+} + I_{2}$ OR Multiples IGNORE State symbols even if incorrect	Cu(NO ₃) ₂ +2KI → CuI + ¹ ⁄2I ₂ + 2KNO ₃	1

Question Number	Acceptable Answer	Reject	Mark
1(b)(ii)	$I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$ OR Multiples	$2Na_2S_2O_3 + I_2$ → $Na_2S_4O_6 + 2KI$	1

Question Number	Acceptable Answer	Reject	Mark
1(b)(iii)	2 mol Cu ²⁺ forms 1 mol I ₂ which reacts with 2 mol $S_2O_3^{2-}$	Just re-writing the equations.	1
	OR Multiples in this explanation		
	OR Any clear explanation in words		
	No TE on incorrect equations in (b)(i) and (b)ii)		

Question Number	Acceptable Answer	Reject	Mark
1 (b) (iv)	mol $S_2O_3^{2^-}$ in 25 cm ³ = 0.0505 x 26.35 /1000 = 1.330675 x 10 ⁻³ ans* (1) mol Cu ²⁺ in 250 cm ³ = mol Cu in sample = 10 x ans* (1) = 1.330675 x 10 ⁻² ans** mass Cu = ans** x 63.5 = 1.330675 x 10 ⁻² x 63.5 (1) = 0.84498 (g) ans*** % copper in rivet brass = 100 x ans***/ 1.35 = 62.591/ 62.6 % (1)		4
	Correct answer with no working scores 4 If incorrect ratio used then max 3 Answers >100% max 3 IGNORE SF except one Do not penalise correct intermediate rounding		

Question Number	Acceptable Answer	Reject	Mark
1(c)(i)	More iodine would be formed(1)(Titre / volume of thiosulfate would be larger) so (calculated) % copper would be higher(1)Second mark dependent on first		2

Question Number	Acceptable Answer	Reject	Mark
1(c)(ii)	MP1 and MP2 are stand alone		2
	Marking Point 1		
	Percentage difference in the titres is (approximately) $100 \times 0.25/26.35$ = 0.94877 / 0.95% (1)	1.9%	
	Marking Point 2 This MP should only be awarded if the candidate appreciates that the addition of urea improves experimental accuracy.	Total apparatus error	
	The percentage error in the burette reading is $(\pm)100 \times 0.1/26.35$ = $(\pm)0.3795\%$	than effect of urea	
	and so change is a significant improvement		
	OR		
	Difference in titres is greater than uncertainty / error in burette reading		
	OR		
	Calculation any other specific apparatus uncertainty and use of urea has a significant effect		
	OR		
	Error without urea is significant when compared with the typical apparatus uncertainty (so the addition of urea improves accuracy) (1)		

Question Number	Acceptable Answer	Reject	Mark
1(d)(i)	(When the electronic structure is built up according to the <i>aufbau</i> rules) the last electron goes into the (3)d-subshell / one of the d-orbitals / the d-orbitals	Just 'electrons present in (3)d-subshell outer / valence electrons are in d- subshell shell for subshell	1

Question Number	Acceptable Answer	Reject	Mark
1 (d) (ii)	copper forms (one or more stable) ions having partially filled (3)d orbitals / subshell (but zinc does not) OR Zinc does not form an ion with a partially filled 3(d) orbital/subshell (but copper does)	3d shell Just 'zinc only forms an ion with a full 3d subshell'	1

Question Number	Acceptable Answer	Reject	Mark
1(d)*(iii)	Penalise use of orbital (singular) once only in (d)(iii) and (d)(iv)	Orbital / shell is split	4
	(3)d orbitals / (3)d subshell split (by the attached ligands) (1)	d-d splitting	
	Electrons are promoted (from lower to higher energy d orbital(s) / levels) OR Electrons move from lower to higher energy		
	d orbital(s) / levels ALLOW		
	d-d transitions occur (1)		
	Absorbing energy /photons of a certain frequency (in the visible region) ALLOW		
	Absorbing light (1)		
	Reflected / transmitted / remaining light is coloured / yellow / in the visible region	emitted	
	ALLOW Complementary colour seen Reflected / transmitted / remaining light / frequency is seen (1)		
	No mention of (3)d then max 3		
	IGNORE reference to electrons relaxing / dropping to the ground state		

Question Number	Acceptable Answer	Reject	Mark
1(d)(iv)	(3)d subshell / (all) (3)d orbitals of zinc(II) are full (so electron transitions are not possible) Ignore No unpaired electrons	(3)d orbital full Full 3d subshell is not split	1

Total for Question 1 = 23 marks

Question Number	Acceptable Answer	Reject	Mark
2(a)(i)	$Fe(s) + H_2SO_4(aq) \rightarrow FeSO_4(aq) + H_2(g)$		1
	OR		
	$Fe(s) + 2H^+(aq) \rightarrow Fe^{2+}(aq) + H_2(g)$		
	OR ionic equations including sulfate ions OR multiples		

Question Number	Acceptable Answer	Reject	Mark
2(a)(ii)	Otherwise the Fe ²⁺ formed will oxidize ALLOW So air / oxygen cannot enter the flask To prevent reaction with air /oxygen (1)	Iron/steel oxidized	2
	Hydrogen can escape through the slit OR So pressure does not build up (1) IGNORE Acid spray		

Question Number	Acceptable Answer	Reject	Mark
2(a)(iii)	Transfer the reaction mixture to a (250 cm³) volumetric/graduated flask ALLOW standard flask(1)(Rinse conical flask and) add washings 	Using other liquids	3

Question Number	Acceptable Answer	Reject	Mark
2(a)(iv)	$5Fe^{2+} + MnO_4^- + 8H^+$		1
	$\rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$		
	OR multiples		
	Ignore state symbols even if incorrect		

Question Number	Acceptable Answer	Reject	Mark
2(a)(v)	Amount $MnO_4^- = 22.15 \times 0.0195 / 1000$ $= 4.31925 \times 10^{-4} \text{ ans}^*$ Amount $Fe^{2+} = 5 \times ans^*$ (1) $= 2.159625 \times 10^{-3} ans^{**}$ Mass of iron in wire = 10 x ** x 55.8 (1) = 1.20507 (g) ans ^{***} % purity = 100 x ans ^{***} / 1.25 = 96.40566 = 96.4 % (1) Ignore rounding errors until final answer Correct answer (96.4%) with or without working scores 4	Answer not to 3 SF	4
	ALLOW Use of Ar(Fe) = 56 when Amount MnO_4^- = 22.15 x 0.0195 /1000 (1) = 4.31925 x 10 ⁻⁴ ans* Amount Fe ²⁺ = 5 x ans* (1) = 2.159625 x 10 ⁻³ ans** Mass of iron in wire = 10 x ** x 56 (1) Mass of iron in wire = 1.20939 % purity = 96.7512 = 96.8 % (1) Ignore intermediate rounding until final answer Correct answer (96.8%) with or without working scores 4 TE on each stage in the calculation % purity > 100 scores max 2	Answer not to 3 SF	

Question Number	Acceptable Answer	Reject	Mark
2(a)(vi)	Colourless / pale yellow to (pale) pink / first permanent pink	Purple Just `(pale) pink'	1

Question Number	Acceptable Answer	Reject	Mark
2(a)(vii)	(More manganate(VII) is needed to oxidize Fe ²⁺ , so) titre will be larger (1) Stand alone mark		3
	Because the Mn oxidation number changes from 7 to 4 (rather than 2) OR Mn accepts fewer electrons per mole (1)		
	(Brown precipitate is) manganese(IV) oxide / MnO ₂ ALLOW Mn(OH) ₄ (1) IGNORE References to inaccurate / inconsistent titre values	Mn(OH)2	

Number	Question	Acceptable Answer	Reject	Mark
NumberAnodic area: $Fe^{2+} + 2e(^{-}) \neq Fe$ $(E^{\circ} = -0.44 \text{ V})$ OR $Fe \neq Fe^{2+} + 2e(^{-})$ 2Cathodic area: $O_2 + 2H_2O + 4e(^{-}) \neq 4OH^-$ (1)Cathodic area: $O_2 + 2H_2O + 4e(^{-}) \neq 4OH^-$ (E^{\circ} = +0.40 \text{ V}) (1)ALLOW $\gamma_2O_2 + 2H^+ + 2e(^{-}) \neq H_2O$ (E^{\circ} = +1.23 \text{ V})Penalise omission of electrons or use of cell diagrams once onlyAnode and cathode reversed max 1.IGNORE State symbols even if incorrect Single arrow in equations1	2(b)(i)	Anodic area: $Fe^{2^+} + 2e(^-) \rightleftharpoons Fe$ $(E^{e} = -0.44 \text{ V})$ OR $Fe \rightleftharpoons Fe^{2^+} + 2e(^-)$ (1) Cathodic area: $O_2 + 2H_2O + 4e(^-) \rightleftharpoons 4OH^ (E^{e} = +0.40 \text{ V})$ (1) ALLOW $V_2O_2 + 2H^+ + 2e(^-) \rightleftharpoons H_2O$ $(E^{e} = +1.23 \text{ V})$ Penalise omission of electrons or use of cell diagrams once only Anode and cathode reversed max 1. IGNORE State symbols even if incorrect Single arrow in equations		2

Question Number	Acceptable Answer	Reject	Mark
2(b)(ii)	$E_{cell}^{\circ} = (+)0.40 - (-0.44) =$ (+)0.84 (V) ALLOW $E_{cell}^{\circ} = (+)1.23 - (-0.44) =$ (+)1.67 (V) Correct answer with no working scores 1		1

Question Number	Acceptable Answer	Reject	Mark
2(b)(iii)	Dissolved salt makes the water a better conductor (of ions) OR The solution acts like a salt bridge OR Makes it an (effective) electrolyte OR Improves the flow of ions through the solution	Improves the flow of ions through the	1
	ALLOW Improves the flow of electrons through the metal	metal Improves the flow of electrons through the solution	

Question Number	Acceptable Answer	Reject	Mark
2(b)(iv)	Magnesium has a more negative E° (allow more reactive) and so reduces the Fe ²⁺ OR suppresses the oxidation of iron OR forces the iron (in the absence of oxygen) to act as the cathode ALLOW Mg corrodes / oxidizes in preference to / faster than (the Fe / steel)		1
	Magnesium acts as a sacrificial anode	Just `sacrificial protection'	

Total for Question 2 = 20 marks

Question Number	Acce	eptable Answe	ers		Reject	Mark
3(a)(i)						1
		Ion	Oxidation number of vanadium			
		V(H ₂ O) ₆ ²⁺	+2			
		$V(H_2O)_6^{3+}$	+3			
		VO ²⁺	+4			
		VO ₂ ⁺	(+5)			
	All t	hree correct		(1)		
	IGN	ORE omission	of `+'			

Question Number	Acceptable Answers	Reject	Mark
3(a)(ii)	Electronic configuration of V: $[Ar]3d^{3}$ 4s ² ALLOW 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ 4s ² [Ar] 4s ² 3d ³ 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ³ IGNORE		2
	Additional [Ar] (1)		
	5 electrons in valence shell / available for bonding ALLOW 5 electrons in outer shell (So max ON = +5) OR Uses the 2 4s and 3 3d electrons (1)	Gives electronic structure of Ar	
	ALLOW Lose 5 electrons (to form Ar structure)	Loss of electrons from a (single) d orbital	
	No TE on incorrect electronic configuration except 3d ⁵ (4s ⁰)		
	IGNORE Stability of +5 oxidation state		

Question Number	Acceptable Answers	Reject	Mark
3(a)(iii)	(3)d orbitals / (3)d subshell split (by the attached ligands) (1)	Orbital / shell is split	4
	Electrons are promoted (from lower to higher energy d orbital(s) / levels) OR Electrons move from lower to higher energy d orbital(s) / levels) ALLOW		
	d-d transitions occur (1)		
	Absorbing energy /photons of a certain frequency (in the visible region) ALLOW		
	Absorbing light (1)		
	Reflected / transmitted / remaining light is coloured / in the visible region	Emitted	
	ALLOW Complementary colour seen Reflected / transmitted / remaining light / frequency is seen (1)		
	Penalise omission of (3)d once only. Ignore reference to electrons relaxing / dropping to the ground state		

Question Number	Acceptable Answers	Reject	Mark
3(a)(iv)	V ⁵⁺ is (small &) high ly charged /has a (very) high charge density (1)		2
	Would polarize / distort H_2O / H_2O electron clouds / $O-H$ bond	Just `Polarize' Ionic bonds	
	ALLOW O-H bond weakening / breaking OR		
	Deprotonation (1)		
	IGNORE		
	References to ionization energy of V / highly electropositive		

Question Number	Acceptable Answers	Reject	Mark
3(a)(v)	No. Because V ⁵⁺ has no d electrons / d sub-shell is empty / d orbital s are empty. IGNORE Any mention of 4s V ⁵⁺ has no partially filled d orbitals		1

Question	Acceptable Answers	Reject	Mark
3(b)(i)	Either Method 1 (using equations)	Use of thiosulphate half cell =0	3
	$4H^{+} + SO_{4}^{2-} + 2e^{-} \rightarrow H_{2}SO_{3} + H_{2}O E^{0} =$ +0.17 (V) $VO^{2+} + 2H^{+} + e^{-} \rightarrow V^{3+} + H_{2}O E^{0}$ = +0.34 (V) (1)		
	$2VO^{2+} + H_2SO_3 \rightarrow 2V^{3+} + SO_4^{2-} + H_2O$ (1)	Uncancelled electrons	
	E_{cell} (SO ₂) = 0.34 - 0.17 = (+)0.17 (V) AND So reduces V(IV) to V(III) / reaction is feasible (1)		
	OR		
	Method 2 (using anticlockwise rule)		
	When half reactions are placed in order (more negative first)		
	$4H^+ + SO_4^{2-} + 2e^- \rightarrow H_2SO_3 + H_2O E^0$ = +0.17 V	5	
Ş	$VO^{2+} + 2H^+ + e^- \rightarrow V^{3+} + H_2O E^0$ = +0.34 V		
	Required reaction 'goes' in anticlockwise direction Arrows on half equations and explanation (2)		
	$2VO^{2+} + H_2SO_3 \rightarrow 2V^{3+} + SO_4^{2-} + H_2O$ (1)	Uncancelled electrons	

Question Number	Acceptable Answers	Reject	Mark
3(b)(ii)	$2V^{3+} + H_2O \rightarrow V^{2+} + VO^{2+} + 2H^+$		1
	ALLOW $V(H_2O)_6^{3+}$ and $V(H_2O)_6^{2+}$		

Question Number	Acceptable Answers	Reject	Mark
3(b)(iii)	(Relevant electrode potentials are $VO^{2+} + 2H^{+} + e^{-} \rightarrow V^{3+} + H_2O E^{0}$ $= +0.34 \text{ V}$ $V^{3+} + e^{-} \rightarrow V^{2+} E^{0} = -0.26 \text{ V}$)		2
	$E_{cell} (disproportionation) = (-0.26 - 0.34) = -0.6(0) (V) $ (1)		
	E_{cell} negative so disproportionation not (thermodynamically) feasible. (1)		
	TE for second mark only if value given		

Total for Question 3 = 16 marks