Arenes/Benzene Chemistry

Mark Scheme 2

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	Transition Metals & Organic Nitrogen Chemistry
Sub Topic	Arenes/Benzene Chemistry
Booklet	Mark Scheme 2

Time Allowed: 68 minutes

Score: /56

Percentage: /100

Grade Boundaries:

A*	А	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question Number	Acceptable Answer	Reject	Mark
1(a)(i)	H—C=0 OR non-displayed structure (with atoms in any order) ALLOW Positive charge on any part of the structure OR Outside bracketed structure / formula	HCOCI / methanoyl chloride	1

Question Number	Acceptable Answer	Reject	Mark
1 (a)(ii)	+C=0 +C=0 + +		3
	H_C=0 H_O		
	TE on incorrect electrophile in (a)(i) Positive charge on any part of the electrophile		
	Curly arrow from on or within the circle to positively charged carbon	Curly arrow on	
	ALLOW Curly arrow from anywhere within the hexagon	or outside the hexagon	
	Arrow to any part of the CHO ⁺ including to the + charge		
	Non-displayed electrophile (1)		
	Intermediate structure including charge with horseshoe covering at least 3 carbon atoms, and	Dotted bonds to H and CHO	
	facing the tetrahedral carbon and	unless	
	some part of the positive charge must be within the horseshoe	clearly a dots & wedge 3-	
	Ignore structure of side chain for this mark (1)	structure	
	Curly arrow from C—H bond to anywhere in the benzene ring reforming delocalized fully correct structure including correctly bonded substituent Substituent may be non-displayed (1)	COH for CHO	
	Correct Kekulé structures score full marks		
	Ignore any involvement of AIX_4^- (or similar) in the formation of the final structure		

Question Number	Acceptable Answer		Reject	Mark
1(a)(iii)	hydrogen cyanide / HCN potassium (or sodium) cyanide / KCN / Na ignore pH = 8	(1) aCN (1)	NaOH	2
	OR	(1)		
	KCN / NaCN H_2SO_4 / HCl ignore concentrations and pH = 8	(1) (1)	NaOH	
	OR			
	HCN NaOH / pH = 8	(1) (1)		
	ALLOW names or formula throughout			

Question Number	Acceptable Answer	Reject	Mark
1(a)(iv)	Hydrochloric acid / HCl(aq)		1
	OR		
	Sulfuric acid / H ₂ SO ₄ (aq)		
	OR		
	sodium hydroxide / NaOH / potassium hydroxide / KOH and followed by any strong acid / H ⁺		
	ALLOW		
	HCl / H ₂ SO ₄ / name or formula of any strong acid		
	IGNORE		
	Water / H ₂ O Concentrated Dilute		

Question Number	Acceptable Answer	Reject	Mark
1 (b)(i)	The first two marks are stand alone		3
	H0 (1)	OH bonded to ring the wrong way around Benzene ring	
	(Concentrated) sulfuric acid ALLOW Any named strong acid / correct formula with or without state symbol IGNORE Dilute / water (1) (Heat under) reflux (1) Condition mark dependent on the reagent mark being awarded or near miss.	H ⁺ / H ₃ O ⁺ Just 'heat'	

Question Number	Acceptable Answer	Reject	Mark
1(b)(ii)	The esterification / reaction is reversible / an equilibrium (So yield is low) ALLOW Does not go to completion		1
	IGNORE References to cost/rate No TE on an incorrect reaction in (b)(i)		

Question Number	Acceptable Answer	Reject	Mark
1 (b)(iii)	PCl ₅ reacts with both OH groups		1

Question Number	Acceptable Answer	Reject	Mark
1(c)(i)	All three correct scores 2 marks Two correct from three scores 1 mark More than three circled scores max 1 mark ALLOW Any clear labelling Any ring containing only one correct carbon		2

Question Number	Acceptable Answer	Reject	Mark
1(c) (ii)	Any two from Only one isomer may be (more) active One isomer (or more) may have a negative effect ALLOW Side effects Different isomers have different (biochemical) properties ALLOW higher dosage required to obtain sufficient amount of active isomer (so expensive) If no other mark is scored Separation of isomers needed OR Low yield can score 1 IGNORE References to just 'cost'	Geometric / structural isomers	2

Total for Question 1 = 16 marks

Question Number	Correct Answer	Reject	Mark
2(a)	X-ray diffraction/crystallography	X-rays alone X radiation	1
		IR/UV/nmr	

Question Number	Correct Answer	Reject	Mark
2(b)	Mark independently		3
	First mark:		
	ALLOW Single ring and two double bonds	Single ring and three double bonds	
	Single ring around all atoms (1)		
	Second mark: EITHER electrons delocalised (around the ring(s))	delocalised orbitals	
	OR		
	pi system around all (10) carbon atoms (1)		
	Third mark:		
	EITHER overlap of p-orbitals		
	OR		
	p/ pi-/π/ 10 (ALLOW pie) electrons		
	ALLOW (1))	
	six electrons if single ring and two double bonds shown		
	Phthalic anhydride structure 2 max		

Correct Answer	Reject	Mark
First mark Formation of nitronium ion (may combine equations) (1)		4
$2H_2SO4 + HNO_3 \rightarrow$ $^{+}NO_2/NO_2^{+} + H_3O^{+} + 2HSO_4^{-}$		
OR		
$H_2SO4 + HNO_3 \rightarrow$ $^+NO_2/NO_2^+ + H_2O + HSO4^-$		
OR		
$H2SO4 + HNO3 \rightarrow H_2NO_3^+ + HSO_4^-$		
And		
$H2NO_3^+ \rightarrow NO_2^+ + H_2O$		
Charges are needed for first mark		
TE on incorrect electrophile If benzene used instead of naphthalene 3 max Do not penalise the use of Phthalic anhydride Correct Kekulé structures score full marks ALLOW multiple nitrations		
	First mark Formation of nitronium ion (may combine equations) 2H ₂ SO4 + HNO ₃ → †NO ₂ /NO ₂ + H ₃ O + 2HSO ₄ - OR H ₂ SO4 + HNO ₃ → †NO ₂ /NO ₂ + H ₂ O + HSO4 - OR H2SO4 + HNO3 → H ₂ NO ₃ + HSO ₄ - And H2NO ₃ + NO ₂ + H ₂ O Charges are needed for first mark OCHARGES are needed for first mark TE on incorrect electrophile If benzene used instead of naphthalene 3 max Do not penalise the use of Phthalic anhydride Correct Kekulé structures score full marks ALLOW	First mark Formation of nitronium ion (may combine equations) 2H ₂ SO4 + HNO ₃ → *NO ₂ /NO ₂ * + H ₃ O* + 2HSO ₄ — OR H ₂ SO4 + HNO ₃ → *NO ₂ /NO ₂ * + H ₂ O + HSO4— OR H2SO4 + HNO3 → H ₂ NO ₃ * + HSO ₄ — And H2NO ₃ * → NO ₂ * + H ₂ O Charges are needed for first mark TE on incorrect electrophile If benzene used instead of naphthalene 3 max Do not penalise the use of Phthalic anhydride Correct Kekulé structures score full marks ALLOW

Second mark Curly arrow from on or within the circle to (positive) N ALLOW Curly arrow from anywhere within the hexagon	Curly arrow on or outside the hexagon
Arrow to any part of the electrophile including to the + charge (which can be anywhere on electrophile), OR Arrow to a point at least half the distance between ring and electrophile (1)	
Third mark Intermediate structure including charge with horseshoe covering at least 3 carbon atoms, and facing the tetrahedral carbon and with some part of the positive charge within the horseshoe.	Partial bonds to H or Subs group
ALLOW dotted horseshoe (1)	
IGNORE	
displayed nitro group even if incorrect A single lapse of omitting internal circle or double bonds in 3 rd or 4 th mark	
Fourth mark If final product not 1, 4, 5 or 8 MP4 cannot be scored Curly arrow from C—H bond to anywhere in the ring reforming delocalised structure of a correct stable molecule. (1)	H ₂ / H product
IGNORE	
Absence of HSO ₄ ⁻ /H ₂ SO ₄ /H ⁺	

Question Number	Correct Answer	Reject	Mark
2(d)	C ₁₀ H ₈		3
	This mark can be awarded if the molar mass of naphthalene has been used as 128 even if the skeletal formula in the equation has been used (1)		
	$C_{10}H_8 + 12O_2 \rightarrow 10CO_2 + 4H_2O$ (1)		
	ALLOW The balanced equation with skeletal formula of naphthalene scores both marks		
	Ignore state symbols even if incorrect		
	Number of moles of naphthalene = 1.28 = 0.01(00) 128		
	Volume of gas = $10 \times 0.01 \times 24.0$ = $2.4(0) \text{ dm}^3 / 2400 \text{ cm}^3$ (1)		
	ALLOW TE on incorrect formula of naphthalene for max 2		

Question Number	Correct Answer		Reject	Mark
2(e)	Hydrogen /H ₂ (1	1)	H alone loses first mark but	2
	Second mark is consequential on Hydrogen	1	not second	
	Heat/any specified temperature about 100°C	ve		
	And			
	nickel/ Ni /platinum/ Pt/ palladium / Pd catalyst (1			

Question Number	Correct Answer	Reject	Ma rk
2(f)(i)	Water/H₂O		1

Question Number	Correct Answer	Reject	Mark
2(f)(ii)	(In strong acid) an oxygen (in the C-O/C=O/O-H bond) will protonate/gain H/H ⁺ (1)		2
	(In alkali) a proton is lost from each/both phenol group(s)		
	ALLOW		
	(In alkali) a proton/hydrogen/ H/H ⁺ is lost from phenol group(s) (1)		

Question Number	Correct Answer	Reject	Mark
2(g)	Phenylamine is added to a mixture of sodium nitrite/ sodium nitrate(III)/ NaNO ₂ and (dilute) hydrochloric acid/ HCI/ sulfuric acid/ H ₂ SO ₄	Just sodium nitrate	4
	nitrous acid/ HNO ₂ (1)		
	at 5°C/between 0 and 10°C/ at 10°C/ or less than 10°C		
	ALLOW		
	ice bath		
	ALLOW any temperature or range of temperatures within that range (1)		
	(A mixture of 2-naphthol and) aqueous sodium hydroxide/alkali is added to produce a dye (1)		
	N II N O H		
	OR		
	rings in hexagons		
	ALLOW		
	$C_6H_5N_2$ group at any carbon except fused carbons (1)		

(Total for Question 2 = 20 marks)

Question Number	Acceptable Answer	Reject	Mark
3(a)(i)	+ CH ₂ or CH ₂ CH ₂ CH ₂ ALLOW Positive charge on any part of the carbocation Structural / fully displayed / skeletal formulae		1

Question Number	Acceptable Answer	Reject	Mark
3(a)(ii)	CH ₂ CH ₂ —CH X X = Cl / Br / I OR structural / fully displayed / skeletal formulae OR		1
	3- hloro/bromo/iodo prop(-1-)ene No TE on incorrect electrophile in	name without '3'	
	(a)(i)		

Question Number	Acceptable Answer	Reject	Mark
	Acceptable Answer CH2 CH CH3 OH CH3 OH CCH3 OH CCH3 OH CCH4 CH4 CCH CCH CCH CCH CCH CCH CCH C	Reject Curly arrow on	Mark 3
	Arrow to any part of the electrophile including to the + charge (which can be anywhere on electrophile), OR Arrow to a point at least half the distance between ring and electrophile (1) Intermediate structure including charge with horseshoe covering at least 3 carbon atoms, and facing the tetrahedral carbon and with some part of the positive charge within the horseshoe. IGNORE substituent errors (incorrect position on ring or bond to substituent) at this marking point ALLOW dotted horseshoe (1) Curly arrow from C—H bond to anywhere in the benzene ring reforming delocalized structure of a correct stable molecule. Ignore any involvement of AlCl ₄ ⁻ in the final step (1) Correct Kekulé structures score full marks	or outside the hexagon Partial bonds to H or CH ₃ except for dot and wedge in 3-D structure	

Question Number	Acceptable Answer	Reject	Mark
3 (b)(i)	Stand alone marks		2
	Geometric / E-Z / cis-trans isomerism (1)	Optical isomerism	
	Because isoeugenol has (two) different groups attached to each of the carbon atoms of the double bond		
	ALLOW Because eugenol has two hydrogen atoms on one of the carbon atoms in the C=C (1)		
	IGNORE References to the barrier to free rotation about the C=C		

Question	Acceptable Answer	Reject	Mark
Number 3(b)*(ii)	If no other mark is scored 'both eugenol and isoeugenol have eight peaks' scores 1		4
	Candidates are only expected to interpret the spectra using knowledge of the (n+1) rule.		
	EITHER The only (significant) difference is likely to be (in the peak areas / heights) due to the protons on the alkene chain (1)		
	This mark may be awarded if the use of the alkene chain is indicated but not stated		
	Both will have three sets of peaks due to the three sets of protons on the alkene chain (1)		
	The alkene chain will give two doublets and a quintet in both isomers (1)		
	In isoeugenol the doublets will have different peak areas / heights under the peaks / peak heights in ratio 1:3 whereas in eugenol the doublets will be the same height (1)		
	OR Eugenol has areas / heights in the ratio 2:1:2:1:1:1:3 (1)		
	and isoeugenol has peak areas / heights in the ratio 3:1:1:1:1:1:3 (1)		
	The alkene chain will give two doublets and a quintet in both isomers (1)		
	In isoeugenol the doublets will have different peak areas / heights under the peaks / peak heights in ratio 1:3 whereas in eugenol the doublets will be the same height (1)		
	OR The only (significant) difference likely to be in the splitting pattern of the peaks due to the protons on the alkene chain (1)		
	In eugenol the protons at the end of the alkene chain are in different environments so eugenol will have four sets of peaks whereas isoeugenol will have three sets of peaks (1)		

3(b)*(ii) (cont)	In eugenol the alkene chain will give three doublets and a quintet (1)	
	In isoeugenol the alkene chain will give two doublets and a quintet (1)	

Question Number	Acceptable Answer	Reject	Mark
3(b) (iii)	V_2O_5 oxidizes isoeugenol / alkene substituent (to the aldehyde & ketone) (and V(V) is reduced to a lower oxidation state) OR Explanation in terms of isoeugenol reducing V_2O_5 (1) H_2O_2 oxidizes vanadium back to the +5 oxidation state (1) Mechanism with H_2O_2 oxidizing V_2O_5 as the first step scores max 1 If no other mark is scored 'vanadium(V) is reduced then oxidized' scores 1	Just 'V ₂ O ₅ oxidizes'	2
	Ignore any reference to adsorption and desorption on the surface.		

Question Number	Acceptable Answer	Reject	Mark
3(b)(iv)	Vanillin has an aldehyde group, suggesting a peak in the range 1740-1720 (cm ⁻¹) whereas methyl vanillyl ketone has a ketone group suggesting a peak in the range 1700-1680 (cm ⁻¹) (The peaks occur at different wavenumbers so the ketone peak could be seen) (1) These are general ranges and might overlap in the particular spectra OR Vanillin is an aromatic aldehyde OR Concentration of the ketone might be too small for the peak to be observed (1)		2

Question Number	Acceptable Answer	Reject	Mark
3 (c)(i)	6 (moles of $S_2O_3^{2-}$ per mole CH_3O)		2
	Stand alone mark		
	In the sequence $ROCH_3 \equiv CH_3I \equiv IBr \equiv HIO_3 \equiv 3I_2 \equiv 6S_2O_3^{2-}$ (1)	Partial sequences	

Question Number	Acceptable Answer		Reject	Mark
3(c)(ii)	Mr (vanillin) = 152	(1)		3
	EITHER % CH ₃ O in pure vanillin = 100 x 31/152 = 20.3947% % purity of the vanillin = 100 x 20.09 / 20.3947 = 98.5058%	(1) (1)		
	OR 20.09% weighs 31 So 100% weighs 100 x 31/20.09 = 154.31 So apparent molar mass = 154.3 Therefore % purity is 152 x 100/154.31 = 98.5058%	1 (1) (1)		
	OR Apparent mass CH_3O = $100 \times 20.09/152 = 30.5368$ Therefore % purity is $100 \times 30.5368/31 = 98.5058\%$ Correct answer with no working	(1) (1)		
	scores 3 IGNORE SF except 1 SF			

Total for Question 3 = 20 marks