Amines, Amides, Amino Acids & Proteins

Mark Scheme

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Торіс	Transition Metals & Organic Nitrogen Chemistry
Sub Topic	Amines, Amides, Amino Acids & Proteins
Booklet	Mark Scheme

Time Allowed:	53 minutes
Score:	/44
Percentage:	/100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question Number	Correct Answer	Reject	Mark
1	С		1

Question Number	Correct Answer	Reject	Mark
2	Α		1

Question Number	Correct Answer	Reject	Mark
3 (a)	В		1
Question	Correct Answer	Reject	Mark
Number			
3 (b)	D		1

Question Number	Correct Answer	Reject	Mark
4	С		1

Question Number	Correct Answer	Reject	Mark
5	D		1

Question Number	Correct Answer	Reject	Mark
6	В		1

Question Number	Correct Answer	Reject	Mark
7	В		1

Question Number	Correct Answer	Reject	Mark
8	В		1

Question Number	Correct Answer	Reject	Mark
9	С		1

Question Number	Acceptable Answer	Reject	Mark
10(a)(i)	(Both have hydrogen bonds) methylamine has stronger London / dispersion / induced dipole(-induced dipole) / van der Waals forces (1) As it has more electrons		2
	greater surface area (1)		
	ALLOW (Both have hydrogen bonds) stronger hydrogen bonds in methylamine because of electron donating effect of the methyl group (1) makes the nitrogen lone pair more available (1)		
	IGNORE just `hydrogen bonds stronger'		
	If no other marks are scored then `both molecules have hydrogen bonds and London forces' scores 1 mark		

Question Number	Acceptable Answer	Reject	Mark
10(a)*(ii)	Amines form hydrogen bonds with water (molecules)(1)		3
	As molar mass (of the amine) increases, the size / strength of the London forces/ dispersion / induced dipole(-induced dipole) / van der Waals forces (between amine molecules) increase ALLOW The size of the hydrophobic group		
	increases (1)		
	So the energy needed to break the London forces (of the amines) increases (becomes more and more similar to the energy released in forming hydrogen bonds) OR		
	becomes (progressively) smaller (1)		
	IGNORE References to hydrophilic groups		

Question Number	Acceptable Answer	Reject	Mark
10(a)(iii)	$CH_3NH_2 + H_2O \Rightarrow CH_3NH_3^+ + OH^-$ ALLOW \rightarrow for $\Rightarrow \& CH_3NH_3^+ OH^-$ IGNORE Position of charges		1

Question Number	Acceptable Answer	Reject	Mark
10 (a)(iv)	Basic strength depends on the (donation / availability of) the lone pair (of electrons on the nitrogen atom)ALLOWBasic strength depends on the ability of a nitrogen atom to accept a protonMethyl groups are electron donating (so lone 	N becomes more electronegative	3
	Lone pair of (nitrogen on) phenylamine interacts with n / delocalised electrons of the benzene ring (so lone pair donation decreases / lone pair less available) ALLOW Lone pair delocalised into the (benzene) ring 'Non-bonding electron pair' for lone pair (1)	Just `electron pair'	

Question Number	Acceptable Answer	Reject	Mark
Number 10(b)(i)	If neither answer refers to an electron pair then max 1 for this item Arrow 1 Movement of π electron pair / π electrons (to oxygen atom) OR Movement of a pair of electrons from the double bond Arrow 2 Movement of lone pair / non-bonded pair of electrons (from the nitrogen) (to C—N bond) (1) If neither of these marks is scored then 'each arrow shows the movement of an electron	Just "breaking of the π bond"	2
	pair scores 1 mark		

Question Number	Acceptable Answer	Reject	Mark
10 (b)(ii)	$H_3C - C $ NH_2^+		1

Question Number	Acceptable Answer	Reject	Mark
10 (b)(iii)	(The electron movement shown above means that) the carbonyl carbon has a smaller (partial) positive charge than an aldehyde or ketone ALLOW no positive charge OR carbonyl carbon is resistant to nucleophilic attack		1

Question Number	Acceptable Answer	Reject	Mark
10 (c)(i)	One mark for each structure with fully displayed, structural or skeletal formulae and in any orientation $\begin{array}{c c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $		2
	$H_2N - CH_2 - C - N - CH - C - OH - CH - C - OH - CH - C - OH - CH - C$		
	only		
	ALLOW If continuation bonds added to the dimers max 1. Two fully correct polymer structures (1)		

Question Number	Acceptable Answer	Reject	Mark
10 (c)(ii)	The amine group (of glycine & alanine) is protonated & cannot act as a nucleophile ALLOW		1
	IGNORE References to activation energy		

Question Number	Acceptable Answer	Reject	Mark
10(c)*(iii)	Dot samples of the amino acid mixture (and known amino acids) on the plate and dip the plate in the solvent (1) Use of ninhydrin to make amino acids visible / as a developer (1) Compare distance travelled of mixture components and known amino acids OR Compare R _f with data book values (1) The first mark may be awarded for a suitable diagram e.g.	Amino acids dissolved in mobil phase solvent	e 3
	IGNORE Omission of lid in diagram.		

Total for **Question 10** = 19 marks

Question Number	Acceptable Answers		Reject	Mark
11(a)	= PCl ₅ / phosphorus(V) chloride / phosphorus pentachloride / PCl ₃ / phosphorus(III) chloride / phosphorus trichloride / SOCl ₂ / thionyl chloride / thior dichloride	nyl (1)		3
	\mathbf{B} = benzene / C ₆ H ₆ or ring structures			
	\mathbf{C} = bromine / Br ₂	(1) (1)	Bromine water / Bromine and FeBr ₃	

Question	Acceptable Answers	Reject	Mark
11(b)(i)	$CH_3CH_2Br + AlBr_3 \rightarrow CH_3CH_2^+ + AlBr_4^-$ (1)		2
	 C₂H₅ + sign anywhere on formula of electrophile (AlBr₃ is an) electron pair acceptor / lone pair acceptor / Lewis acid / Friedal-Crafts catalyst ALLOW polarizes C-Br bond IGNORE Halogen carrier 	Accepts electrons Just `catalyst'	

Question	Acceptable Answers	Reject	Mark
Number			2
11(0)(11)	F _{CH₂·CH₃ + CH₂}		3
	$\begin{array}{c} H \\ H^{+} \\$		
	TE on incorrect electrophile in (b)(i)		
	Curly arrow from on or within the circle to positively charged carbon		
	ALLOW Curly arrow from anywhere within the hexagon	Curly	
	Arrow to any part of the electrophile including to the + charge (1)	or outside	
	Intermediate structure including charge with horseshoe covering at least 3 carbon atoms, and	the hexagon	
	facing the tetrahedral carbon and	Partial bonds to	
	with some part of the positive charge within the horseshoe	CH ₃	
	ALLOW dotted horseshoe (1)		
	Curly arrow from C—H bond to anywhere in the benzene ring reforming delocalized structure (1)		
	Correct Kekulé structures score full marks		
	Ignore any involvement of AIX_4^- in the final step		
	NOTE $C_2H_5^+$ as electrophile can score all 3 marks		

Question Number	Acceptable Answers	Reject	Mark
11(c)(i)	KCN / potassium cyanide / NaCN / sodium cyanide (1) In ethanol (dependent on mark 1)	cyanide / CN ⁻ HCN	2
	ALLOW alcohol / aqueous ethanol / aqueous alcohol (1)		
	ethanolic or alcoholic KCN (etc) scores both marks BUT CN ⁻ / HCN in ethanol scores second mark		

Question Number	Acceptable Answers	Reject	Mark
11(c)(ii)	Name / formula of any strong aqueous acid	H^+ / H_3O^+	1
	OR named strong aqueous alkali followed by acidification		

Question Number	Acceptable Answers	Reject	Mark
11(d)(i)	$\begin{array}{c c} \hline 1700-1680 \ (cm^{-}) \\ \hline H^{0} \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		3
	1 mark for each correct range / reverse range Single numbers within range = max 2 marks		

Question Number	Acceptable Answers	Reject	Mark
11(d)(ii)	Only (the carboxylic acid group in) ketoprofen will give a peak at 1725 – 1700 cm^{-1}		1
	ALLOW		
	Ketoprofen has 2 absorptions whilst benzenecarboxylic acid has one	Just ketoprofen has more peaks	
	Correct TE identifying a unique range		

Total for Question 11 = 15 marks