Organic Synthesis

Mark Scheme 2

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	Transition Metals & Organic Nitrogen Chemistry
Sub Topic	Organic Synthesis
Booklet	Mark Scheme 2

Time Allowed: 68 minutes

Score: /56

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question Number	Accept	able Ans	swers			Reject	Mark
1(a)							
	Elem ent	%		mol	Ratio		
	С	40.44	÷12	= 3.37	2.99		
	Н	7.87	÷ 1	= 7.87	7.00 4		
	0	35.96	÷ 16	= 2.2475	2.00		
	N	15.73	÷ 14	= 1.12357	1.00		
				(1)	(1)		
	Symbo Stand a No TE o IGNOR	_	/ order ark rect rat icant fig	tio gure and rou	_		
	errors	except 1	lsf in m	nole calculat	ion		3

Question Number	Acceptable Answers	Reject	Mark
1 (b)(i)	Peak at $m/e = 89$ labelled M ⁺		
	ALLOW Any clear label e.g. $C_3H_7O_2N^+$		1

Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	$M_r = 89 = M_r (C_3H_7O_2N)$ so molecular formula is $C_3H_7O_2N$ Symbols in any order IGNORE structural and displayed formulae	Answer with no explanation $M_r = 90$ $C_3H_7O_2N^+$	1

Question Number	Acceptable Answers		Reject	Mark
1(c)(i)	Gas evolved is carbon dioxide / CO ₂ (1	1)		
	(so carboxylic) acid / -COOH group is present (1	1)		
	Dark blue colour indicates the formation of (copper(II)) complex	a	NH ₃ complexes	
	ALLOW indicates ligand exchange has occurred (3	1)		
	Suggests that an amine / -NH ₂ group is present		Amide group	
	ALLOW NH (IGNORE ammine	1)		
	amino acid			4

Question Number	Acceptable Answers	Reject	Mark
1(c)(ii)	Any 2 of A, B, C or D (1 mark for each)		
	<u>Molecules</u>		
	A B		
	H_2N OH OH		
	H_2N OH OH H_2C —C		
	H_3C O H_2N — CH_2 O		
	C D		
	H_3C — NH OH H_3C OH N — C O OH OH OH OH OH OH OH		
	H_2C — C' N — C'		
	O H ₃ C O		
	Zwitterions		
	A B		
	NH_3 O^-		
	н <u>`</u> с—с́、 н ₂ с—с́、		
	H_3C		
	C D		
	$H_3C \longrightarrow NH_2^+$ $O^ H_3C$ $O^ HN^+ \longrightarrow C$ $O^ O^ O^-$		
	H_2C — C , H_1N^+ — C ,		
	O H ₃ C O		
	Or fully displayed structures		2

Question Number	Acceptable Answers	Reject	Mark
1(c) (iii)	First mark P has structure A H ₂ N HC—C O O Fecond mark EITHER Splitting pattern quartet due to CH next to CH ₃ and doublet due to CH ₃ next to CH ALLOW A comparison e.g A has quartet & doublet but B has two triplets OR As the areas / heights of the two peaks are in a 3:1 ratio (approximately), there must be 3 protons in one environment and 1 in another No TE if A is not one of the isomers given in (c)(ii)	Just quartet & doublet Just two peaks	
			2

Question Number	Acceptable Answers	Reject	Mark
1(d)	P (is an amino acid) exists as a zwitterion ALLOW Zwitterion formula		
	OR molecules are held together by (strong) ionic forces		
	IGNORE Just 'electrostatic forces'		1

Total for Question 1 = 14 marks

Question Number	Acceptable Answers	Reject	Mark
2(a)(i)	M = chloro-/bromo-/iodo-methane / CH3Cl / CH3Br / CH3I		1

Question Number	Acceptable Answers	Reject	Mark
2(a)(ii)	$CH_3X + AICI_3 \rightarrow CH_3^+ + AIXCI_3^-$		
	Ignore curly arrows even if incorrect		
	Ignore state symbols even if incorrect		1

Ques. No.	Acceptable Answers	Reject	Mark
2(a) (iii)	CH ₃ + CH ₃ + CH ₃		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	TE on incorrect electrophile in (a)(ii)		
	If benzene used instead of methylbenzene OR		
	If final product not 1,2-dimethylbenzene (max 2)		
	Curly arrow from on or within the circle to positively charged carbon ALLOW		
	Curly arrow from anywhere within the hexagon	Curly arrow on or	
	Arrow to any part of the CH_3^+ including to the + charge (1)	outside the hexagon	
	Intermediate structure including charge with horseshoe covering at least 3 carbon atoms, and	Dotted bonds to H	
	facing the tetrahedral carbon and	and CH₃	
	some part of the positive charge must be within the horseshoe (1)		
	Curly arrow from C—H bond to anywhere in the benzene ring reforming delocalized structure (1)		
	Correct Kekulé structures score full marks		
	Ignore any involvement of AlX ₄ ⁻ in the final step		3

Question Number	Acceptable Answers	Reject	Mark
2(a)(iv)	The methyl group donates / pushes electrons into the benzene ring (because of its positive inductive effect / donating inductive effect) (1)	Mention of lone pair	
	(Increased electron density) makes the ring more susceptible to electrophilic attack (1)	Just 'reacts faster'	
	IGNORE Activating group / ring activation		2

Question Number	Acceptable Answers	Reject	Mark
2(a)(v)	Any identified (name or formula) strong mineral acid: sulfuric acid / H ₂ SO ₄ (aq) / hydrochloric acid / HCl(aq) / nitric acid / HNO ₃ (aq)		
	ALLOW Formulae without (aq) concentrated (acid)		
	IGNORE dilute 'acid' H ⁺ (aq) / H ⁺ addition of extra alkali before adding acid		1

Question Number	Acceptable Answers	Reject	Mark
2(b)(i)	Oxidation state / oxidation number /valency easily changed		
	ALLOW 'Just' variable oxidation state / oxidation number /valency OR easily oxidized and reduced		
	IGNORE references to d orbitals / active sites		1

Question Number	Acceptable Answers	Reject	Mark
2(b)(ii)	Surface area of catalyst decreases OR Number of active sites is reduced ALLOW Active sites blocked OR Catalyst is poisoned	Active sites saturated / occupied by reactants denatured	1

Question Number	Acceptable Answers	Reject	Mark
2(c)(i)	ALLOW COOCH ₃ for ester group skeletal / displayed structures omission of benzene ring circle.		
	omission of benzene mig circle.		1

Question Number	Acceptable Answers	Reject	Mark
2(c)(ii)	The forces between plasticiser / phthalate and polymer molecules are weak (1)		2
	So London /dispersion /van der Waals forces (rather than covalent bonds)	hydrogen bonds	
	ALLOW dipole-dipole forces OR Forces between water and plasticiser / phthalate molecules are strong(er) / hydrogen bonds (1)		

Question Number	Acceptable Answers		Reject	Mark
2(c)(iii)	The polymer molecules move over one another more easily (Plasticiser molecules disrupt the	se 1) 1)	break cross- linking between polymer molecules / (covalent) bonds	
	polymer structure (1	1)		2

Question Number	Acceptable Answers	Reject	Mark
2(d)(i)	PCl ₅ / phosphorus(V) chloride / phosphorus pentachloride OR PCl ₃ / phosphorus(III) chloride / phosphorus trichloride OR SOCl ₂ / thionyl chloride / thionyl dichloride		
			1

Question Number	Acceptable Answers	Reject	Mark
2(d)(ii)	Reaction goes to completion / (much) faster / not reversible / not an equilibrium / higher yield / catalyst not needed / uses less energy		
	ALLOW Heat / increased temperature not required. Reverse arguments.		
	IGNORE Cost / reacts easily. More reactive.		1
	Tiore reactive.		

Question Number	Acceptable Answers	Reject	Mark
2(d)(iii)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Omission of benzene ring circle	
	OR $ \begin{array}{ccccccccccccccccccccccccccccccccccc$		
	ALLOW -COOCH ₂ CH ₂ OOC- for diester link		
	three ester links (i.e. – CO-O-CH ₂ -) only if polymer is open-chained (non-cyclic) and at least a dimer (1)		
	remaining structure (1) this mark is not stand alone IGNORE () _n		2

Question Number	Acceptable Answers	Reject	Mark
2(d)(iv)	Methanol / CH₃OH	alcohol	1

Total for Question 2 = 20 marks

Question Number	Correct Answer	Reject	Mark
3 (a)	$C_7H_6O_3$		1
	IGNORE		
	Any other formulae eg C ₆ H ₄ OHCOOH		

Question Number	Correct Answer	Reject	Mark
3 (b)	NaCO ₃ scores 0		2
	$2C_6H_4OHCOOH + Na_2CO_3 \rightarrow$ $2C_6H_4OHCOO^{(-)}Na^{(+)} + CO_2 + H_2O$	H ₂ CO ₃ /	
	Entities (1)	C ₇ H ₆ O ₃	
	Balancing correct entities/H ₂ CO ₃ /C ₇ H ₆ O ₃		
	ALLOW		
	Incorrect hydrogens in organic formula on both sides (1)		
	ALLOW other correct formulae for 2-hydroxybenzoic acid		
	Fully correct ionic equation (2)		
	IGNORE		
	State symbols even if incorrect		

Question Number	Correct Answer	Reject	Mark
3(c) (i)	OR COOPH		1
	Ignore bond angles around H ALLOW Two hydrogen bonds within one		
	molecule between phenol and carboxylate groups		

Question Number	Correct Answer	Reject	Mark
3 (c)(ii)	First mark		2
	4-hydroxybenzoic acid has a higher melting temperature with some attempt at justification which may not be correct (1)	Lower/same melting temperature loses first mark	
	Second mark	mark	
	EITHER		
	There are (more) hydrogen bonds between molecules		
	OR		
	chains of molecules held together by hydrogen bonds		
	OR		
	So more hydrogen bonds have to be broken		
	OR		
	More energy is needed to break the extra hydrogen bonds		
	OR		
	The intramolecular hydrogen bonds in 2-hydroxybenzoic acid do not need to be broken (1)		
	Or reverse argument		

Question Number	Correct Answer	Reject	Mark
3(d)	Scroll down answer to check name first OR COOH for carboxylic acid group (1) 3,5-dibromo-2-hydroxybenzoic acid ALLOW 2-hydroxy-3,5-dibromobenzoic acid (1) TE for name on their incorrect mono/di/tri/tetra substituted product	Look out for substitution of the phenol group or the carboxylic acid group 0 out of 2	2
	for 1 max		

Question Number	Correct Answer		Reject	Mark
3 (e)(i)	Methanol	(1)		2
	(Concentrated) sulfuric acid		Nitric acid	
	ALLOW			
	(concentrated) hydrochloric acid			
	IGNORE			
	Acidic conditions			
	And			
	Heat/reflux/warm/any temperatur above 25°C	e		
	Second mark dependent on an ald in MP1	ohol (1)		

Question Number	Correct Answer	Reject	Mark
3 (e)(ii)	Methyl 2-hydroxybenzoate molecules are held together by (strong) London/dispersion forces		3
	IGNORE		
	Dipole forces and hydrogen bonds (1)		
	Less / limited hydrogen bond between water and methyl 2-hydroxybenzoate (so sparingly soluble) (1)		
	The hydrogen bonding between water molecules is (very) strong (1)		
	Insufficient energy released to break hydrogen bonds in water/ London forces in methyl 2-hydroxybenzoate (1)		
	(Some of the) hydrogen bonds are internal in methyl 2-hydroxybenzoate (1)		
	The oxygens in methyl 2- hydroxybenzoate can form hydrogen bonds to the hydrogens of water molecules		
	OR		
	The hydrogen on the oxygen in methyl 2-hydroxybenzoate can form hydrogen bonds to the oxygens of water molecules (1)		

Question Number	Correct Answer	Reject	Mark
3 (e)(iii)	ALLOW		3
(e)(iii)	Correct formulae for names		
	First mark		
	Sodium hydrogencarbonate (solution)		
	ALLOW		
	Sodium carbonate (solution)		
	IGNORE water (1)		
	Second mark		
	to neutralise/ remove remaining acids (1)		
	IGNORE references to saturated sodium chloride solution to reduce solubility of ester		
	Third mark		
	(Dried with) (anhydrous)		
	sodium sulfate	A consistent in our	
	OR	Anything else	
	magnesium sulfate		
	OR		
	calcium sulfate		
	OR		
	calcium chloride (1)		

Question Number	Correct Answer	Reject	Mark
3 (e)(iv)	Distillation OR	Steam distillation	1
	Distil off the ethyl ethanoate ALLOW	Solvent extraction	
	Fractional distillation/redistillation		

Question Number	Correct Answer	Reject	Mark
3 (e)(v)	First marking point		2
	A is methyl 2-hydroxybenzoate		
	OR		
	B is 2-hydroxybenzoic acid		
	and a bond / wavenumber considered (eg O-H, C-O, C=O, C-H in CH ₃) (1)		
	Second marking point This is independent of the first mark		
	Any one bond with wavenumber from:		
	In spectrum B the carboxylic acid OH between 3300 and 2500 (cm ⁻¹)		
	In spectrum A no broad peak between 3300 and 2500 (cm ⁻¹)		
	In spectrum A, C-O (benzoate) between 1150-1100 (cm ⁻¹) and/or 1310-1250 (cm ⁻¹)	C=O in acid/ester	
	In spectrum A alkyl C-H between 2962 – 2853 (cm ⁻¹) (1)	CSICI	
	IGNORE		
	In spectrum A phenol/OH peak between 3300 and 3100 (cm ⁻¹)		
	OR		
	C-H arene		

Question Number	Correct Answer		Reject	Mark
3 (e)(vi)	moles of 2-hydroxybenzoic acid = $\frac{9.00}{138}$ = 0.0652			3
	and			
	moles of methyl 2-hydroxybenzoate = 0.6 x 0.0652 = 0.0391	(1)		
	Mass of methyl 2-hydroxybenzoate = 0.0391 x 152 = 5.948 (g)	(1)		
	Volume of methyl 2-hydroxybenzoate = 5.948/1.174 = 5.066 = 5.07 cm ³			
	Correct volume with no working 3 marks	(1)		
	ALLOW	(1)		
	Internal TE s eg			
	For 100% gives 9.91(3) g and 8.44(4) cn	n³ (2)		
	IGNORE SF			

(Total for Question 3 = 22 marks)