Organic Synthesis

Mark Scheme 3

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	Transition Metals \& Organic Nitrogen Chemistry
Sub Topic	Organic Synthesis
Booklet	Mark Scheme 3

Time Allowed:	57 minutes
Score:	$/ 47$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$

Question	Acceptable Answer					Reject	Mark
1(a)					(1) (1)		
		C	H	Cl			
	\%	37.8	6.30	55.9			
	mol	$\begin{gathered} 37.8 / 12 \\ =3.15 \end{gathered}$	$\begin{aligned} & 6.3 / 1 \\ & =6.3 \end{aligned}$	$\begin{gathered} 55.9 / 35.5 \\ =1.575 \end{gathered}$			
	ratio	2	4	1			
	(hence $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}$) IGNORE Molecular formula						

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{1 (b) (i)}$	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Cl}_{2}$		1

Question Number	Acceptable Answer	Reject	Mark
1(b) (ii)	All three correct scores 2 Any two correct scores 1 (The following combinations of chlorine isotopes occur in \mathbf{Q} :) ${ }^{35} \mathrm{Cl}$ and ${ }^{35} \mathrm{Cl}$ (with MS peak at 126) ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$ (with MS peak at 128) ${ }^{37} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$ (with MS peak at 130) ALLOW Any representations of pairs of chlorine atoms If none of the above marks is scored then A molecule of \mathbf{Q} has two chlorine atoms and the two isotopes are present scores 1	Just 'chlorine has isotopes' Any reference to carbon-13	2

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{1 (b) (\text { iii) }}$	${ }^{35} \mathrm{Cl}$ is more abundant than ${ }^{37} \mathrm{Cl}$	${ }^{35} \mathrm{Cl}$ is more stable	1

Question Number	Acceptable Answer	Reject	Mark
1(b)*(iv)	 (2-oxobutanoic acid) (3-oxobutanoic acid) ALLOW CH_{3} and OH Explanation (in any order) R must be a diol / have 2 OH group Each $\mathbf{O H}$ group reacts with sodium to give 0.5 mol of H_{2} Because the amount of H_{2} is halved both OH groups are oxidized but one is oxidized to a carboxylic acid / COOH and the other to a ketone group ALLOW Because the amount of H_{2} is halved only one of the two OH groups remains		5

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{1 (b) (v)}$	(yellow precipitate) is iodoform / (1) triiodomethane / CHI		2
	IGNORE "Iodoform test" positive iodoform test given by CH3CO(-R)/ methyl ketone (so S must be 3-oxobutanoic acid / structure identified from (b)(iv))		
	ALLOW CH3CHOH(-R) /secondary 2-ol if this structure is given in 23b(iv)		

www.igexams.com

Question Number	Acceptable Answer	Reject	Mark
2(a)	$\begin{align*} \text { Molar mass of } \mathrm{TO}_{2} & =100 \times 32 / 36.82 \tag{1}\\ & =86.9093 \tag{1}\\ \text { Molar mass of } \mathrm{T} & =86.9093-32 \\ & =54.9\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \tag{1} \end{align*}$ (hence T is manganese / Mn) $\therefore \mathrm{mol} \mathrm{T}=1.1506$ weighs $100-36.82=63.18 \mathrm{~g}$ 1 mol T weighs 63.18/1.1506 $=54.909 \mathrm{~g}$ (hence T is manganese / Mn) OR Percentage of Mn 100-36.82 $\begin{equation*} =63.18 \tag{1} \end{equation*}$ Number of moles of $\mathrm{Mn}=63.18 / 54.9$ $\begin{equation*} =1.15 \tag{1} \end{equation*}$ Number of moles of oxygen $=36.82 / 16$ $=2.3$ (hence TO_{2} is MnO_{2}) ALLOW Calculations based on moles of O_{2} Correct answer with no working scores zero		3

Question Number	Acceptable Answer	Reject	Mark
2(b)(i)	Molecular ion labelled in any way on the mass spectrum and Molar mass $=76\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$	1	

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{2 (c) (i)}$	IGNORE H2O ligands in c)i) \& c)ii)		2
	$\mathrm{Mn}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Mn}(\mathrm{OH})_{2}(\mathrm{~s}) \quad$ (1) Equation States ALLOW use of T for Mn states mark for non-ionic equation OR for unbalanced equation with correct species	(1)	

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{2 (c) (\text { ii) }}$	$\mathrm{MnO}_{2} \cdot \mathrm{nH}_{2} \mathrm{O} \rightarrow \mathrm{MnO}_{2}+\mathrm{nH}_{2} \mathrm{O}$ OR $\mathrm{Mn}(\mathrm{OH})_{4} \rightarrow \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ LHS (1) RHS (1) ALLOW use of T for Mn ALLOW for 1 mark $\mathrm{Mn}(\mathrm{OH})_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{MnO}_{2}+\mathrm{H}_{2} \mathrm{O}$	2	

www.igexams.com

Question Number	Acceptable Answer	Reject	Mark
2(d)	K^{+}		Just 'K'
	IGNORE	2	
	'potassium ion'	(1)	
	KMnO_{4}	(1)	
	TE on cation given for MP1		

Total for Question 2 = 12 marks

Question Number	Acceptable Answer	Reject	Mark	
3(a)(i)	$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ $\mathrm{ALLOW}\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$ $\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}$ $\mathrm{ALLOW} \mathrm{Cu}(\mathrm{OH})_{2}$	(1)	$\mathrm{Cu}^{2+}(\mathrm{aq)}$	3
	$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ ALLOW $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$	(1)		
ALLOW Ligand in any order Omission of square brackets	$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$			

Question Number	Acceptable Answer	Reject	Mark		
3(a)(ii)	(3)d orbitals / (3)d subshell split (by the attached ligands) (1)	Orbital / shell / subshells split d-d splitting	4		
	Electrons are promoted (from lower to higher energy d orbital(s) / levels) OR Electrons move from lower to higher energy (d orbital(s) / levels) ALLOW d-d transitions occur /electrons are excited (1)	Absorbing energy /photons of a certain frequency (in the visible region) ALLOW Absorbing light	Reflected / transmitted / remaining light is coloured / in the visible region		
ALLOW Complementary colour seen Reflected / transmitted / remaining light / frequency is seen	(1)	'Reverse' for		\quad	'complementary'
:---					
Penalise omission of (3)d once only.					
Ignore reference to electrons					
relaxing / dropping to the ground					
state	\quad				
:---					

Question Number	Acceptable Answer	Reject	Mark
3(a)(iii)	The (different) ligands split the (3)d orbitals / subshell to a different extent	Orbital / shell / subshells unless penalised in 22(a)(ii)	2
	(So) the energy absorbed / reflected ltransmitted is different OR	Emitted unless Renalised in Radiation (ALLOW light) is at a different frequency	22(a)(ii)

Question Number	Acceptable Answer	Reject	Mark
3(b)	Any 5 of the following:		5
	Step 1: Minimum amount of solvent to minimise the amount of solid complex left in solution (when it recrystallizes) ALLOW To form a saturated solution (of \mathbf{C}) OR So the solution is as concentrated as possible		
	Step 2 : (hot) So maximum amount / most of complex remains in (hot) solution OR To avoid the premature formation the crystals in the funnel (filter) To remove insoluble / undissolved impurities		
	Step 3: To ensure that maximum amount of solid crystallizes ALLOW To obtain a better yield (of crystals)	Speed up crystallization	
	Step 4: To remove soluble / dissolved impurities So that the filtered solid is dry ALLOW So that filtration is fast	Remove insoluble impurities	

Total for Question 3 = 14 marks

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 (a)}$	Volume of CO_{2} is less than volume of oxygen (and only other product is water). OR Fewer moles / molecules of gaseous products (than reactants).		1

Question Number	Acceptable Answers	Reject	Mark
4(b)	Potassium hydroxide / KOH absorbs $\mathbf{C O}_{\mathbf{2}}$		1
	OR		
	$\mathbf{C O}_{\mathbf{2}}$ reacts with potassium hydroxide $/ \mathrm{KOH}$		
	OR		
	$\mathbf{C O}_{\mathbf{2}}$ dissolves in potassium hydroxide $/ \mathrm{KOH}$		

Question Number	Acceptable Answers	Reject	Mark	
4(c)	So $10 x=40$ $x=4$	(1)		3
	So $10+10(x+(y / 4))-10 x=20$ $10(y / 4)=10$ $y=4$ $C_{x} H_{y}=C_{4} H_{4}$ Correct formula with no working or explanation scores 3	(1)		

Total for Question $4=5$ marks

