Organic Synthesis

Mark Scheme 3

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	Transition Metals & Organic Nitrogen Chemistry
Sub Topic	Organic Synthesis
Booklet	Mark Scheme 3

Time Allowed: 57 minutes

Score: /47

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question Number	Acceptable Answer				Reject	Mark	
1(a)					_		2
		С	Η	Cl			
	%	37.8	6.30	55.9			
	mol	37.8/12 = 3.15	6.3/1 = 6.3	55.9/35.5 = 1.575	(1)		
	ratio	2	4	1	(1)		
	IGNOR	e C₂H₄Cl) RE ılar formul	a		-		

Question Number	Acceptable Answer	Reject	Mark
1 (b)(i)	$C_4H_8CI_2$		1

Question Number	Acceptable Answer	Reject	Mark
1 (b)(ii)	All three correct scores 2 Any two correct scores 1 (The following combinations of chlorine	Just 'chlorine has isotopes'	2
	isotopes occur in Q :) 35Cl and ³⁵ Cl (with MS peak at 126) 35Cl and ³⁷ Cl (with MS peak at 128) 37Cl and ³⁷ Cl (with MS peak at 130) ALLOW Any representations of pairs of chlorine atoms	Any reference to carbon-13	
	If none of the above marks is scored then A molecule of Q has two chlorine atoms and the two isotopes are present scores 1		

Question Number	Acceptable Answer	Reject	Mark
1 (b)(iii)	³⁵ Cl is more abundant than ³⁷ Cl	³⁵ Cl is more stable	1

Question Number	Acceptable Answer	Reject	Mark
1(b)*(iv)	H H O O H H—C—C—C—C H H H O H (2-oxobutanoic acid)		5
	(2-oxobutanoic acid) (1) H O H O		
	(3-oxobutanoic acid) (1)		
	ALLOW CH ₃ and OH		
	Explanation (in any order) R must be a diol / have 2 OH group (1)		
	Each OH group reacts with sodium to give 0.5 mol of H ₂ (1)		
	Because the amount of H_2 is halved both OH groups are oxidized but one is oxidized to a carboxylic acid / COOH and the other to a ketone group		
	ALLOW Because the amount of H ₂ is halved only one of the two OH groups remains (1)		

Question Number	Acceptable Answer	Reject	Mark
1(b)(v)	(yellow precipitate) is iodoform / triiodomethane / CHI_3 (1)		2
	positive iodoform test given by CH ₃ CO(-R)/ methyl ketone (so S must be 3-oxobutanoic acid / structure identified from (b)(iv))		
	ALLOW CH ₃ CHOH(-R) /secondary 2-ol if this structure is given in 23b(iv) (1)		

Question Number	Acceptable Answer	Reject	Mark
1(b)(vi)	butane-1,3-diol ALLOW butan-1,3-diol (1)		3
	HO HC CH_2 + $2Na \rightarrow H_3C$ H_2C OH		
	$Na^{+} O$ $HC \longrightarrow CH_2 + H_2$ $H_3C \longrightarrow H_2C \longrightarrow O^-Na^+$		
	Any reasonable representation of the organic product (1) Balanced equation (1) These two marks may be awarded for equation involving any diol		
	COMMENT Do not penalise O-Na for final structure		

Total for Question 1 = 16 marks

Question Number	Acceptable Answer		Reject	Mark
2(a)	Molar mass of $TO_2 = 100 \times 32 / 36.82$			3
	= 86.9093	(1) (1)		
	Molar mass of T = $86.9093 - 32$ = $54.9 \text{ (g mol}^{-1}\text{)}$			
	(hence T is manganese / Mn)	(1)		
	OR Amount of O (in 100g) = 36.82 /16 = 2.3013 mol			
		(1)		
	∴ mol T = 1.1506 weighs 100 - 36.82 = 63.18 g	(1)		
	1 mol T weighs 63.18 / 1.1506 = 54.909 g			
	(hence T is manganese / Mn)	(1)		
	OR Percentage of Mn 100 - 36.82 = 63.18	(1)		
	Number of moles of Mn = 63.18/54.9 = 1.15 Number of moles of oxygen = 36.82/16	(1)		
	$= 2.3$ (hence TO_2 is MnO_2)	(1)		
	ALLOW Calculations based on moles of O ₂			
	Correct answer with no working scores a	zero		

Question Number	Acceptable Answer	Reject	Mark
2(b)(i)	Molecular ion labelled in any way on the mass spectrum and Molar mass = 76 (g mol ⁻¹)		1

Question Number	Acceptable Answer		Reject	Mark
2(b)(ii)	M CH₃ H₂C==CH	N		2
	/ CH₂CHCH₃ / propene	OH OH / CH₂OHCHOHCH₃ / propane-1,2-diol		
	ALLOW prop-1-ene (1)	ALLOW propan-1,2-diol / 1,2- propan(e)-diol (1)		
	IGNORE C ₃ H ₆ and C ₃ H ₈	₉ O ₂		

Question Number	Acceptable Answer		Reject	Mark
2(c)(i)	IGNORE H ₂ O ligands in c)i) & c)ii)			2
	$Mn^{2+}(aq) + 2OH^{-}(aq) \rightarrow Mn(OH)_{2}(s)$			
	Equation	(1)		
	States	(1)		
	ALLOW use of T for Mn states mark for non-ionic equation OR for unbalanced equation with cor	rect species		

Question Number	Acceptable Answer	Reject	Mark
2(c)(ii)	$MnO_2.nH_2O \rightarrow MnO_2 + nH_2O$ OR $Mn(OH)_4 \rightarrow MnO_2 + 2H_2O$		2
	LHS (1) RHS (1)		
	ALLOW use of T for Mn		
	ALLOW for 1 mark $Mn(OH)_2 + \frac{1}{2}O_2 \rightarrow MnO_2 + H_2O$		

Question Number	Acceptable Answer		Reject	Mark
2(d)	K ⁺ IGNORE 'potassium ion' KMnO₄ TE on cation given for MP1	(1) (1)	Just `K'	2

Total for Question 2 = 12 marks

Question Number	Acceptable Answer		Reject	Mark
3(a)(i)	[Cu(H ₂ O) ₆] ²⁺ ALLOW [Cu(H ₂ O) ₄] ²⁺	(1)	Cu ²⁺ (aq)	3
	ALLOW [Cu(1120)4]	(1)		
	Cu(H ₂ O) ₄ (OH) ₂	(1)		
	ALLOW Cu(OH) ₂	(1)		
	[Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺ ALLOW [Cu(NH ₃) ₄] ²⁺	(1)	[Cu(NH ₃) ₆] ²⁺	
	ALLOW Ligand in any order Omission of square brackets			

Question Number	Acceptable Answer	Reject	Mark
3(a)(ii)	(3)d orbitals / (3)d subshell split (by the attached ligands) Electrons are promoted (from lower to higher energy d orbital(s) / levels) OR Electrons move from lower to higher energy (d orbital(s) / levels) ALLOW d—d transitions occur /electrons are excited (1)	Orbital / shell / subshells split d—d splitting	4
	Absorbing energy /photons of a certain frequency (in the visible region) ALLOW Absorbing light (1)		
	Reflected / transmitted / remaining light is coloured / in the visible region	Emitted	
	ALLOW Complementary colour seen Reflected / transmitted / remaining light / frequency is seen (1)	'Reverse' for 'complementary'	
	Penalise omission of (3)d once only. Ignore reference to electrons relaxing / dropping to the ground state		

Question Number	Acceptable Answer	Reject	Mark
3(a)(iii)	The (different) ligands split the (3)d orbitals / subshell to a different extent (1) (So) the energy absorbed / reflected / transmitted is different OR Radiation (ALLOW light) is at a different frequency (1)	Orbital / shell / subshells unless penalised in 22(a)(ii) Emitted unless penalised in 22(a)(ii)	2

Question Number	Acceptable Answer	Reject	Mark
3 (b)	Any 5 of the following:		5
	Step 1: Minimum amount of solvent to minimise the amount of solid complex left in solution (when it recrystallizes) ALLOW To form a saturated solution (of C) OR So the solution is as concentrated as possible (1)		
	Step 2: (hot) So maximum amount / most of complex remains in (hot) solution OR To avoid the premature formation the crystals in the funnel (filter) To remove insoluble / undissolved impurities (1)		
	Step 3: To ensure that maximum amount of solid crystallizes ALLOW To obtain a better yield (of crystals) (1)	Speed up crystallization	
	Step 4: To remove soluble /dissolved impurities (1) So that the filtered solid is dry	Remove insoluble impurities	
	ALLOW So that filtration is fast Total for Overtice	2 14	

Total for Question 3 = 14 marks

Question Number	Acceptable Answers	Reject	Mark
4(a)	Volume of CO_2 is less than volume of oxygen (and only other product is water).		1
	OR Fewer moles / molecules of gaseous products (than reactants).		

Question Number	Acceptable Answers	Reject	Mark
4(b)	Potassium hydroxide / KOH absorbs CO₂		1
	OR CO₂ reacts with potassium hydroxide / KOH		
	OR		
	CO ₂ dissolves in potassium hydroxide / KOH		

Question Number	Acceptable Answers	Reject	Mark
4(c)	So $10x = 40$ x = 4 (1)		3
	So $10 + 10(x + (y/4)) - 10x = 20$		
	$ \begin{array}{r} 10(y/4) = 10 \\ y = 4 \end{array} $ (1)		
	$C_{x}H_{y} = C_{4}H_{4} $ (1))	
	Correct formula with no working or explanation scores 3		

Total for Question 4 = 5 marks