Electrochemistry

Mark Scheme

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	Chemistry Lab Skills 2
Sub Topic	Electrochemistry
Booklet	Mark Scheme

Time Allowed:	27 minutes
Score:	$/ 22$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$

Question Number	Correct Answer	Reject	Mark
1 (a)	First mark Copper half cell Copper electrode dipping into copper(II) sulfate solution / solution $\mathbf{A} / \mathrm{Cu}^{2+}$ (solution) Second mark Iron half cell Iron electrode dipping into iron(II) sulfate solution/solution $\mathbf{B} / \mathrm{Fe}^{2+}$ (solution) Cells can be on either side Note that two platinum electrodes, or copper and iron electrodes the wrong way round loses both of the first two marks. IGNORE charges (in symbols or words) on the electrodes, even if incorrect Third mark Salt bridge Strip of filter paper with potassium nitrate solution / solution C dipping into both solutions Only penalise electrodes / filter paper not dipping into solutions once. Fourth mark Circuit Voltmeter \mathbf{X} / high resistance voltmeter correctly connected with or without crocodile clips	Platinum/ Pt / iron / Fe Electrode Platinum / Pt / copper / Cu Electrode Just 'salt bridge' Any combination of meters Battery or power supply Parallel wire across voltmeter	4

www.igexams.com

Question Number	Correct Answer	Reject	Mark
1(b)(i)	$\begin{align*} & \mathrm{E}_{\mathrm{cell}}=\mathrm{E}_{\mathrm{Cu}}-\mathrm{E}_{\mathrm{Fe}} \tag{1}\\ & 0.79=0.34-\mathrm{E}_{\mathrm{Fe}} \\ & \mathrm{E}_{\mathrm{Fe}}=0.34-0.79=-0.45(\mathrm{~V}) \tag{1} \end{align*}$ Correct answer with no working (+)0.45 (V) scores (1) only TE is allowed for wrong working with consistent answer, for example: $\begin{aligned} & \mathrm{E}_{\mathrm{cell}}=\mathrm{E}_{\mathrm{Fe}}-\mathrm{E}_{\mathrm{Cu}} \\ & 0.79=\mathrm{E}_{\mathrm{Fe}}-0.34 \\ & \mathrm{E}_{\mathrm{Fe}}=0.79+0.34=(+) 1.13(\mathrm{~V}) \end{aligned}$ Award second mark only		2

Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	$-0.45=-0.44+0.013 \ln \left[\mathrm{Fe}^{2+}\right]$		2
	$\begin{align*} \ln \left[\mathrm{Fe}^{2+}\right] & =(-0.45+0.44) / 0.013 \\ = & -0.769 \tag{1} \end{align*}$	0.76	
	$\left[\mathrm{Fe}^{2+}\right]=\exp (-0.769)=0.46348$		
	$\begin{equation*} =0.46\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{equation*}$		
	ACCEPT any answer which gives 0.46 when rounded to 2 sf		
	Correct answer with no working (2)		
	0.76 gives $0.46761=0.47$ worth (1)		
	ALLOW TE from (b)(i) is allowed.		
	Notice this may mean that the concentration is greater than 10 mol dm^{-3} which is allowed even though impossible.		
	SOME EXAMPLES ARE: +0.45 V gives $\ln \left[\mathrm{Fe}^{2+}\right]=68.46$		
	so $\left[\mathrm{Fe}^{2+}\right]=5.4 \times 10^{29}$		
	Give 1 mark out of 2 for either statement		
	+1.13 V gives $\ln \left[\mathrm{Fe}^{2+}\right]=120.769$		
	so $\left[\mathrm{Fe}^{2+}\right]=2.81 \times 10^{52}$		
	Give 1 mark out of 2 for either statement		
	Internal TE for this part can also be awarded if $\ln \left[\mathrm{Fe}^{2+}\right]$ has a value and is correctly converted to $\left[\mathrm{Fe}^{2+}\right]$.		
	It is quite common to get		
	$\ln \left[\mathrm{Fe}^{i+}\right]=+0.769$ when $\left[\mathrm{Fe}^{2+}\right]=2.158=2.16$ is worth		

Question	Acceptable Answers					Reject	Mark
1(c)(i)	Titration	Rough	1	2	3		2
	Burette reading (final) / cm^{3}	25.00	24.40	24.40	25.70		
	Burette reading (initial) / cm^{3}	1.00	2.10	1.60	3.30		
	Titre $/ \mathrm{cm}^{3}$	24.(00)	22.3(0)	22.8(0)	22.4(0)		
	Titres used to calculate mean ($\sqrt{ }$)		\checkmark		\checkmark		
	All four titres correct Note that the trailing zeroes are not essential (1) Mean Titre $22.35\left(\mathrm{~cm}^{3}\right)$ ALLOW TE on titres due to incorrect subtractions					$\begin{align*} & 22.40 / \tag{1}\\ & 22.4 / \\ & 22.50 / \\ & 22.875 \\ & \left(\mathrm{~cm}^{3}\right) \end{align*}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (c) (i i)}$	Colourless to (first permanent pale) pink / purple		$\mathbf{1}$
Both colours required ALLOW Pale green / light green / green for colourless Pale yellow for colourless	Dark green		

Question Number	Acceptable Answers	Reject	Mark
1(c)(iii)	$\begin{align*} & \left(\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{Fe}^{2+}\right) \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Fe}^{3+} \\ & \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \ldots \tag{1}\\ & \ldots+5 \mathrm{Fe}^{3+} \tag{1} \end{align*}$ But allow $+5 e^{(-)}$on either side of correct balanced equation for 1 max IGNORE state symbols even if incorrect	$\begin{aligned} & +5 e^{(-)} \\ & \text {alone } \end{aligned}$	2

Question Number	Acceptable Answers	Reject	Mark
1(c)(iv)	$\begin{align*} & \mathrm{mol} \mathrm{MnO}_{4}^{-}=22.35 \times 0.0300 / 1000 \tag{1}\\ &=6.705 \times 10^{-4} \\ &=6.705 \times 10^{-4} \times 5 \tag{1}\\ &=3.353 \times 10^{-3} \\ & \mathrm{~mol} \mathrm{Fe}^{2+} \\ & {\left[\mathrm{Fe}^{2+}\right] }=3.353 \times 10^{-3} \times 1000 / 25.0 \tag{1}\\ &=0.1341 \tag{1}\\ &=\mathbf{0 . 1 3 4}\left(\mathrm{mol} \mathrm{dm}^{-3}\right) \text { to } \mathbf{3} \mathbf{~ S F} \end{align*}$ Correct answer with no working Correct answer not to 3 sf with no working ALLOW TE on mean titre in 2 c (i) and equation in (iii) 22.5 gives 0.135 22.6 gives 0.136 Internal TEs should also be given if steps of the calculation are omitted. Some will multiply by $1000 / 22.35$ in the last step to give 0.150 which is 3 out of 4 marks 0.15 would be 2 out of 4 marks		4

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (c) (v)}$	(0.157-answer to 2c(iv)) x 100 0.157 Correct answer: $\frac{(0.157-0.134) \times 100}{0.157}$ IGNORE sf except 14.6% Some TEs from (iv): 0.135 gives 14.01% 0.136 gives 13.38%	$\mathbf{1}$	
0.150 gives 4.46%			

Question Number	Acceptable Answers	Reject	Mark
1(c)(vi)	Pipette $\quad 0.06 / 25 \times 100=(\pm) 0.24 \%$ Burette $0.10 / 22.35 \times 100=(\pm) 0.44743$ $\begin{equation*} =(\pm) 0.45 \% \tag{1} \end{equation*}$ ALLOW TE on titre in $2 \mathrm{c}(\mathrm{i})$ $\begin{aligned} 22.5 \text { gives } & =(\pm) 0.4444 \\ & =(\pm) 0.44 \% \\ 22.6 \text { gives } & =(\pm) 0.44248 \\ & =(\pm) 0.44 \% \end{aligned}$ But $0.1 / 25 \times 100=0.4$ does not get a mark So 0.4 with no working gets no mark		2

www.igexams.com

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (c) (v i i)}$	The apparatus error / combined errors is negligible compared to the difference (in concentration).	Just 'error of pipette is smaller than error of burette' Percentage difference in value is bigger than percentage apparatus error. OR	Just 'apparatus error is small'
Percentage difference is greater than percentage error(s)	'\% error of apparatus is small so both pieces of apparatus are suitable' alone		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (c) (v i i i)}$	Fe^{2+} is (partially) oxidized (by air / oxygen) (on standing overnight)	Absorbed moisture overnight so solution more dilute	$\mathbf{1}$
	ALLOW Reverse argument	Incomplete reaction	Transfer errors OR oxidized (by air / oxygen) (on standing overnight)

Total for Question 1 = $\mathbf{2 2}$ marks

