Electrochemistry

Question Paper

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	Chemistry Lab Skills 2
Sub Topic	Electrochemistry
Booklet	Question Paper

Time Allowed:

27 minutes

Score:

/22

Percentage:

/100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 A student wishes to measure the $E_{\rm cell}$ value of an electrochemical cell in which the following reaction occurs.

 $Fe(s) + Cu^{2+}(aq) \rightarrow Fe^{2+}(aq) + Cu(s)$ Equation 1

The solutions and apparatus available to the student are listed below.

Solution A: copper(II) sulfate 1.00 mol dm⁻³

Solution **B**: iron(II) sulfate concentration unknown

Solution **C**: potassium nitrate saturated Solution **D**: barium chloride saturated

Copper foil electrodes Iron foil electrodes

Platinum foil electrodes

Voltmeter **W**: low resistance Voltmeter **X**: high resistance Ammeter **Y**: low resistance Ammeter **Z**: high resistance

Beakers

Connecting leads Crocodile clips Strips of filter paper

(a) Draw a labelled diagram of the cell that the student should set up to measure $E_{\rm cell}$ for the reaction in **Equation 1**.

Only use items selected from the list above.

(4)

(b) (i) The student measured $E_{\rm cell}$ as +0.79 V. The electrode dipping into the copper(II) sulfate solution was the positive electrode.

For this half-reaction

$$Cu^{2+}(ag) + 2e^{-} \rightleftharpoons Cu(s)$$
 $E^{\oplus} = +0.34 \text{ V}$

where E^{\oplus} is the **standard** electrode potential.

Use the above information to calculate the electrode potential (*E*) in the student's cell for the half-reaction

$$Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)$$
 (2)

(ii) For the half-reaction

$$Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)$$
 $E^{\oplus} = -0.44 \text{ V}$

where E^{\oplus} is the **standard** electrode potential.

For this half-reaction, the electrode potential (E) at a particular concentration is related to the standard electrode potential (E^{\ominus}) by the equation

$$E = E^{+} + 0.013 \ln{[Fe^{2+}]}$$
 Equation 2

where In is the natural logarithm and $[Fe^{2+}]$ is the concentration of Fe^{2+} ions in mol dm⁻³.

Use **Equation 2**, and your answer to (b)(i), to calculate the concentration of Fe^{2+} ions in solution **B**.

(2)

(c) The concentration of another solution of iron(II) sulfate, \mathbf{Q} , was found by titration. 25.0 cm³ samples of \mathbf{Q} were titrated with a solution of acidified potassium manganate(VII), concentration 0.0300 mol dm⁻³.

The results are as follows:

Titration	Rough	1	2	3
Burette reading (final) / cm ³	25.00	24.40	24.40	25.70
Burette reading (initial) / cm ³	1.00	2.10	1.60	3.30
Titre /cm³				
Titres used to calculate mean (✓)				

(i)	Complete the table and calculate the mean titre.	Indicate with a (✓) the titres
	that you have used in your calculation.	

(2)

Mean titre

(ii) State the colour change at the end-point.

(1)

(iii) Complete the equation for the reaction occurring during the titration. State symbols are not required.

(2)

$$\mathrm{MnO_4^{-}} + 8\mathrm{H^+} + 5\mathrm{Fe^{2+}} \rightarrow$$

(iv)	Calculate the concentration, in mol dm $^{-3}$, of the iron(II) sulfate solution, Q .	
	Give your answer to three significant figures.	(4)
		(4)
(v)	The concentration of the iron(II) sulfate solution, \mathbf{Q} , was also measured on a previous day using the method described in part (a).	
	The concentration was found to be 0.157 mol dm ⁻³ .	
	Calculate the percentage difference between this value and the value you calculated in (c)(iv). You should assume that the correct concentration is 0.157 mol dm ⁻³ .	
	ensy merani .	(1)

(vi) In the titration, the volume delivered by the pipette is accurate to ± 0.06 cm³. Each burette reading is accurate to ± 0.05 cm³.

Calculate the percentage error of the pipette for a volume of 25.00 cm³ and of the burette for your mean titre.

(2)

e	
(vii) Comment on the magnitudes of the	values you have calculated in (c)(v) and (c)(vi).
(viii) Suggest why the concentration of iro	n(II) sulfate in solution 0 calculated
in (c)(iv) is lower than the value given	
	(Total for Question 1 = 22 marks)