Transition Metals

Mark Scheme 1

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Торіс	Chemistry Lab Skills 2
Sub Topic	Transition Metals
Booklet	Mark Scheme 1

Time Allowed:	69 minutes
Score:	/57
Percentage:	/100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question Number	Acceptable Answer	Reject	Mark
1(a)	d block OR Transition elements / metals / block ALLOW D block Transitional for transition element / metal		1

Question Number	Acceptable Answer	Reject	Mark
1(b)	Cu ²⁺ / copper(II)	copper / Cu	1
	OR	Fe ²⁺ / iron(II)	
	Fe ³⁺ / iron(III)	iron / Fe	
	OR		
	Cu ²⁺ /copper(II) and Fe ³⁺ / iron(III)		

Question Number	Acceptable Answer	Reject	Mark
1(c)	Cu ²⁺ / copper(II)		1
	ALLOW Cu(H ₂ O) ₆ ²⁺ / Cu(H ₂ O) ₄ ²⁺	Cu / copper	

Question Number	Acceptable Answer		Reject	Mark
1(d)	Chlorine / Cl ₂	(1)	Cl / chloride	2
	Chloride / Cl [−]	(1)	CI / chlorine / Cl ₂	

Question Number	Acceptable Answer		Reject	Mark
1(e)	copper(I) chloride / CuCl No TE on 1(c)	(1)		2
	oxidation / redox (reaction) Standalone mark	(1)	Reduction / disproportionation	

Question Number	Acceptable Answer		Reject	Mark
1(f)	(To a solution of A) add (dilute aqueous ammonia / NH ₃ ((aq)) (until no further change)	;) (1)		2
	(pale blue precipitate dissolves) to form dark blue solution ALLOW (pale) blue precipitate (solid (crystals	a (1)		
	OR	(-)		
	Flame test Blue-green / blue /green colour	(1) (1)	Pale	
	OR		green	
	Add potassium iodide / KI Turns brown	(1) (1)		
	ALLOW			
	Add sodium hydroxide (solution)	(1)	Groop	
	(insoluble in excess)	(1)	ppt	
	OR			
	Add zinc / Zn / magnesium / Mg Brown solid /crystals / precipitate	(1) (1)		
	IGNORE			
	Identity of cation at this point			
	No TE on incorrect cations			
	Reagent / flame test mark standalone			

Question Number	Acceptable Answer		Reject	Mark
1(g)	 (Add dilute nitric acid to a solution of A then) add (aqueous) silver nitrate / AgNO₃((aq)) (1) White precipitate (soluble in dilute aqueous ammonia) (1) 		Sulfuric acid Additional reagents e.g. NaOH (loses MP1 only)	2
	OR Add concentrated / conc sulfuric acid /H ₂ SO ₄	(1)		
	Steamy / misty / white fumes IGNORE Identity of anion at this point No TE on incorrect anions	(1)	smoke Just 'fumes'	

Question Number	Acceptable Answer	Reject	Mark
1(h)	(Yellow colour due to) $[CuCl_4]^{2-}$ (1)		2
	(Green colour due to) [CuCl ₃] ⁻		
	ALLOW		
	CuCl ₂ / [CuCl] ⁺		
	OR		
	A mixture of $[Cu(H_2O)_6]^{2+} / Cu^{2+}((aq))$ and $[CuCl_4]^{2-}$ (1)		
	IGNORE water ligands on chloro copper ions and $CuCl_2$		
	Omission of square brackets		

(Total for Question 1 = 13 marks)

Question Number	Acceptable Answer	Reject	Mark
2(a)(i)	Amount of iron = $5.00/55.8 \text{ (mol)}$ (1) = amount H ₂ SO ₄ (= $0.089606 / 8.9606 \times 10^{-2} \text{ (mol)})$ Volume of 2.00 mol dm ⁻³ H ₂ SO ₄ required = $5.00/55.8 \div 2$ = $0.044803 / 4.4803 \times 10^{-2} \text{ dm}^3$ OR = 44.803 cm^3 (1) If A _r (Fe) = 56 , volume = 0.044643 dm^3 (= 44.643 cm^3) TE on incorrect mol IGNORE all SF and rounding errors except 1 SF on final answer, and rounding errors affecting final answer	Units incorrect or omitted	2

Question Number	Acceptable Answer	Reject	Mark
2(a)(ii)	To remove solid impurities ALLOW Undissolved solids OR Insoluble impurities	To remove unreacted iron	1

Question Number	Acceptable Answer	Reject	Mark
2 (a)(iii)	Evaporate the solution to crystallization	Just	2
	point OR until crystals /solids begin to	'evaporate	
	form	the	
	ALLOW	solution'	
	Concentrate the solution by evaporation	OR	
	OR	Evaporate	
	Reduce the volume by $25 - 75 \%$ (1)	all water	
		OR	
	(Cover solution and) allow to stand / cool	Distillation	
	and		
	dry crystals between filter papers	Dry the	
		solution	
	ALLOW		
	Dry in a warm oven / desiccator (1)	T>80°C	
		Hot oven	
	IGNORE		
	Filtering		
	Points relating just to recrystallization		
1			

Question Number	Acceptable Answer	Reject	Mark
2 (a)(iv)	$Mr (FeSO_4.7H_2O) = 277.9$		3
	= 278 (1)		
	Maximum yield = $277.9 \times 5.00 \div 55.8$ (1) = 277.9×0.08961 (= 24.901 g)		
	89.5% yield = 0.895 x 277.9 x 5.00/55.8 = 22.287 (g)		
	OR		
	If $A_r(Fe) = 56$ and $A_r(S) = 32$ 89.5% yield = 22.215 (g) (1)		
	TE at each stage		
	IGNORE SF except 1 SF		
	Correct answer with no working scores 3		
	Additional Comment The 89.5% yield can be applied to the mass of iron, the mass of FeSO ₄ .7H ₂ O or the moles of FeSO ₄ .7H ₂ O to gain MP3		

Question Number	Acceptable Answer		Reject	Mark
2 (b)(i)	These marks are standalone			3
	Transfer solution to a volumetric / graduated / standard flask (1)		
	add washings (1)		
	Make up to mark / line / 250 cm ³ (with distilled water / dilute sulfuric acid) and then mix (1)		
	ALLOW Different indication of mixing (e.g. swirl / invert / stir). Mixing must follow making up to mark	/		
	IGNORE reference to weighing bottle and mixing when dissolving solid and washings from the weighing			

Question Number	Acceptable Answer	Reject	Mark
2 (b)(ii)	(Pale green solution turns) yellow /orange / brown	red	2
	OR		
	(Pale green solution forms) yellow /orange / brown (solution / cloudy solution / precipitate(1)	red	
	Because (some of) the iron(II) / Fe^{2+} ions are oxidized (to iron(III) / Fe^{3+})	Just 'oxidation'	
	OR		
	iron(III) / Fe ³⁺ ions are formed (from iron(II) / Fe ²⁺ ions)		
	ALLOW		
	$Fe(OH)_3$ formed (1)		

Question Number	Acceptable Answer	Reject	Mark
2(b)(iii)	(colourless /pale yellow to first permanent pale) pink	(colourless /pale yellow to purple / mauve	1
		purple to pink	
		to colouriess	

Question Number	Acceptable Answer		Reject	Mark
2 (b)(iv)	Amount of $MnO_4^- = 25.35 \times 0.0195/1000$	(1)		4
	= 4.94325 x 10 ⁻⁴ (mol) (ans*)	(1)		
	Amount of Fe^{2+} in 250 cm ³ = 5 x 10 x ans* (ans**)	(1)		
	= 0.024716 (mol)			
	Mass of 1 mol of FeSO ₄ .xH ₂ O = 6.75 ÷ ans** = 273.10 (g) (ans***)	(1)		
	IGNORE SF except 1 SF up to this point			
	Correct molar mass with no working scores first 3 marks	S		
	Moles of water of crystallization = (ans*** - 151.9)/18 = 6.7333 = 6.7=7	(1)		
	If $A_r(Fe) = 56$, $x = 6.7278$			
	TE at each stage			
	Final answer = 7 with no working scores 0			

Question Number	Acceptable Answer	Reject	Mark
2(c)(i)	M_r (FeSO ₄ .7H ₂ O) = 277.9 uncertainty = 277.9 x 0.9/100 = (±)2.501		2
	ALLOW		
	M_r (FeSO ₄ .7H ₂ O) = 273 (from 3b(iv) is used (uncertainty = (±)2.458)		
	OR		
	M_r (FeSO ₄ .7.1H ₂ O) = 279.7 is used (uncertainty = (±)2.517) (1)		
	(∴ answers = 277.9±2.5 are within experimental uncertainty)		
	Using $x = 7.1$ gives M_r (FeSO ₄ .7H ₂ O) = 279.7 and this is within the uncertainty range (1)		
	If neither mark is scored		
	ALLOW Answer must be an integer so only needs to be in the range 6.6 to 7.4 for 1 mark		
	IGNORE Calculations based on the percentage difference between 7.1 and 7		

Question Number	Acceptable Answer	Reject	Mark
2 (c)(ii)	The crystals were not dry OR Some of the iron(II) had been oxidized (to iron(III)) OR iron(II) / Fe ²⁺ ions converted into iron(III) / Fe ³⁺ ions IGNORE impurities / transfer errors / titration errors	Titration value too large	1

(Total for Question **2** = 21 marks)

Question Number	Acceptable Answers	Reject	Mark
3(a)(i)	SO ₄ ²⁻	Sulfate HSO₄ ⁻	1
	SO_4^{-2}		

Question Number	Acceptable Answers	Reject	Mark
3(a)(ii)	(Dilute) hydrochloric (acid)/ HCl(aq) / nitric (acid) / HNO ₃ (aq) ALLOW HCl / HNO ₃ Ignore concentrated/conc	Sulfuric acid H ⁺ / H ₃ O ⁺ Carboxylic acid Hydrogen chloride	1

Question Number	Acceptable Answers	Reject	Mark
3(b)(i)	Water and hydroxide can be in either order		1
	If name and formula are given, both must be correct		
	Copper (II) hydroxide / Cu(OH) ₂ / Cu(H ₂ O) ₄ (OH) ₂		
	ALLOW		
	$Cu(H_2O)_2(OH)_2$	Any other	
	IGNORE	numbers	
	Copper hydroxide		
	Square brackets in formula wherever they are		

Question Number	Acceptable Answers	Reject	Mark
3(b)(ii)	Water and ammonia can be in either order		1
	If name and formula are given, both must be correct		
	[Cu(NH ₃) ₄] ²⁺	Any other numbers e.g. [Cu(NH ₃) ₆] ²⁺	
	OR		
	$[Cu(H_2O)_2(NH_3)_4]^{2+}$		
	Charge must be included		
	Outer brackets not required		
	IGNORE order of ligands, but numbers must be correct		
	[Cu(H ₂ O) ₂ (NH ₃) ₄] ²⁺ Charge must be included Outer brackets not required IGNORE order of ligands, but numbers must be correct		

Question Number	Acceptable Answers	Reject	Mark
3 (c)	Cu(H ₂ O) ₆ ²⁺ OR	Cu ²⁺ Cu ²⁺ (aq)	1
	$Cu(H_2O)_4^{2+}$		
	IGNORE Square brackets wherever they are		

Question Number	Acceptable Answers	Reject	Mark
3(d)	CuSO ₄ / Cu ²⁺ SO ₄ ²⁻ If charges given both must be given correctly	CuSO ₄ .5H ₂ O	1

Question Number	Acceptable Answers	Reject	Mark
3 (e)	Mark independently		2
	First mark		
	The (3)d sub-shell(s) / (3)d-orbital(s) cannot be split		
	OR		
	No d-d splitting		
	OR		
	No d-d transitions (1)		
	Second mark		
	No colour as no ligands present		
	ALLOW		
	No water (of crystallization) present OR Not hydrated / Anhydrous salt		
	IGNORE Use of copper rather than copper ions (1)		
	Reverse arguments involving the addition of water acceptable		

(Total for Question **3** = 8 marks)

Question Number	Acceptable Answers	Reject	Mark
4 (a)	Sulfuric acid reacts very exothermically with water	nitric acid	1
	ALLOW		
	The reaction with acid is exothermic		
	OR		
	(Sulfuric) acid will shoot out of container		
	OR		
	The reaction of water with (sulphuric) acid is vigorous/splashes		
	OR		
	Prevent splashing of acid	Prevent splash alone	

Question Number	Acceptable Answers	Reject	Mark
4(b)	(Pale/straw-coloured) yellow / brown / red-brown	Red/purple/blue/black/blue- black/orange	1

Question Number	Acceptable Answers	Reject	Mark
4(c)(i)	(Freshly prepared) starch (solution)		1

Question Number	Acceptable Answers	Reject	Mark
4(c)(ii)	(If starch is added too early) starch iodine complex formed (doesn't re-dissolve)		1
	ALLOW Iodide for iodine		
	ALLOW (Black) solid/precipitate / complex forms		
	OR		
	Insoluble compound forms		

Question Number	Acceptable Answers	Reject	Mark
4(c) (iii)	From blue-black to colourless	to clear	1
	From blue / black/ dark blue/ deep blue to colourless		

Question Number	Acceptab	le Answe	rs		Reject	Mark
4(d)(i)	24.1(0)	23.8(0)	23.55	23.45 (cm ³)		1

Question Number	Acceptable Answers	Reject	Mark
4(d)(ii)	The third and fourth / 23.55 and 23.45 (cm ³)		1
	and		
	They are concordant		
	OR		
	Within ±0.2/0.1 (cm ³)		
	IGNORE Anomalous		

Question Number	Acceptable Answers	Reject	Mark
4(d)(iii)	23.5(0) (cm ³) ALLOW		1
	TE including second titre value, mean = 23.6(0) (cm ³)		

Correct answer 74.6% / 75%		5
OR 74.9% (TE from 23.60 average titre)		
Ignore SF except 1SF		
With no working (5)		
Number of mol of thiosulfate = $\frac{23.50 \times 0.200}{1000}$ (1)		
= 4.70 x 10 ⁻³ /0.00470 Second mark EITHER		
Number of mol of iodine = $\frac{4.70 \times 10^{-3}}{2}$		
= 2.35 x 10 ⁻³ /0.00235 AND		
Number of moles of copper ion		
$= 2 \times 2.35 \times 10^{-3} $ (1)		
= $4.70 \times 10^{-3}/0.00470$ in 10 cm ³		
OR		
From equations amount of iodine is half amount of thiosulfate and amount of copper is twice amount of iodine, so amount of copper equals amount of thiosulfate for this mark		
	Correct answer 74.6% / 75% OR 74.9% (TE from 23.60 average titre) Ignore SF except 1SF With no working (5) Number of mol of thiosulfate $= \frac{23.50 \times 0.200}{1000} (1)$ $= 4.70 \times 10^{-3}/0.00470$ Second mark EITHER Number of mol of iodine $= \frac{4.70 \times 10^{-3}}{2}$ $= 2.35 \times 10^{-3}/0.00235$ AND Number of moles of copper ion $= 2 \times 2.35 \times 10^{-3} (1)$ $= 4.70 \times 10^{-3}/0.00470 \text{ in 10 cm}^{3}$ OR From equations amount of iodine is half amount of thiosulfate and amount of copper is twice amount of thiosulfate for this mark Number of moles of copper in solid	Correct answer 74.6% / 75% OR 74.9% (TE from 23.60 average titre) Ignore SF except 1SF With no working (5) Number of mol of thiosulfate $= \frac{23.50 \times 0.200}{1000}$ (1) $= 4.70 \times 10^{-3}/0.00470$ Second mark EITHER Number of mol of iodine $= \frac{4.70 \times 10^{-3}}{2}$ $= 2.35 \times 10^{-3}/0.00235$ AND Number of moles of copper ion $= 2 \times 2.35 \times 10^{-3}$ (1) $= 4.70 \times 10^{-3}/0.00470$ in 10 cm ³ OR From equations amount of iodine is half amount of thiosulfate and amount of copper equals amount of thiosulfate for this mark Number of moles of copper in solid

$= 10 \times 4.70 \times 10^{-3} = 4.70 \times 10^{-2}/0.0470$	(1)	
Mass of copper in solid = $4.70 \times 10^{-2} \times 63.5$ (c)	
= 2.9845	(1)	
Percentage copper = $\frac{2.9845 \times 100}{4.00}$		
= 74.6125 = 74.6%	(1)	
Using 23.60 by averaging titres 2,	3 and 4	
4.72 x 10 ⁻³ /0.00472	(1)	
2.36 x 10 ⁻³ 0.00236		
AND		
4.72 x 10 ⁻³ /0.00470	(1)	
4.72 x 10 ⁻² /0.0470	(1)	
2.9972	(1)	
74.9%	(1)	
Answers greater than 100% max 3		

Question Number	Acceptable Answers	Reject	Mark
4 (d)(v)	First Mark		2
	Uncertainty in titre value:		
	$\frac{2 \times 0.05}{23.55} \times 100 =$		
	(±)0.42/0.425/0.4246% (1)		
	Second Mark		
	Uncertainty in the mass measurement:		
	$\frac{2 \times 0.005 \times 100}{4.0} = (\pm)0.25\%$		
	OR		
	$\frac{1 \times 0.005 \times 100}{4.0} = (\pm)0.125\%$		
	so it would / would not be worth using a 3 dp balance (1)		
	Ignore SF including 1 SF		

(Total for Question **4** = 15 marks)