Transition Metals

Mark Scheme 2

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Торіс	Chemistry Lab Skills 2
Sub Topic	Transition Metals
Booklet	Mark Scheme 2

Time Allowed:	46 minutes
Score:	/38
Percentage:	/100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question Acceptable Answers Rej	ect Mark
1(a) (i) Burette Burette Burette Heat Burette and (conical) flask / beaker and Either Heated water bath / direct heat Can be shown by heat/arrow (1) Thermometer (1) OR (1) With thermostatic control (1)	2

Question Number	Acceptable Answers	Reject	Mark
1(a)(ii)	(The excess / unreacted) zinc / Zn((s)) (is removed) Allow Insoluble zinc Insoluble reactant Zinc Zinc solid / left over	Insoluble impurities Insoluble reactant alone	1

Question Number	Acceptable Answers	Reject	Mark
1(a)(iii)	To prevent it / T being oxidized by air / oxygen		1
	ALLOW To prevent oxidation		
	OR The vanadium(II) is easily oxidized by air / oxygen OR (As a) large volume / volume greater than 50 cm ³ of potassium manganate(VII) is required		

Question Number	Acceptable Answers	Reject	Mark
1(a)(iv)	EITHER Because the potassium manganate(VII) is self-indicating ALLOW Reaction is self-indicating ALLOW Potassium manganate (VII) changes colour during the reaction/ at the end point. OR at the end point a pink / purple solution forms (from a blue/yellow/green solution) ALLOW Modified pink e.g. yellow pink because of the yellow vanadate(V)	Just obvious / clear colour change without potassium manganate(VII)	1

Question Number	Acceptable Answers	Reject	Mark
1(b)(i)	$\frac{25 \times 0.10}{1000} = 2.5 \times 10^{-3} / 0.0025 \text{ (mol)}$		1

Question Number	Acceptable Answers		Reject	Mark
1(b)(ii)	Total volume of 0.02 mol dm ⁻³ solution of potassium manganate(VII) = $25 + 50$ = 75 cm^3	(1)		2
	$\frac{(75) \times 0.02}{1000} = 1.5 \times 10^{-3} / 0.0015 \text{ (mol)}$	(1)		
	ALLOW for 1 mark			
	$\frac{25 \times 0.02}{1000} = 5 \times 10^{-4} / 0.0005 \text{ (mol)}$			
	OR			
	$\frac{50 \times 0.02}{1000} = 1 \times 10^{-3} / 0.001 \text{ (mol)}$			
	ALLOW Internal TE for incorrect volume in first calculation for second mark.			

Question Number	Acceptable Answers	Reject	Mark
1(b)(iii)	$MnO_4^- + 8H^+ + 5e^ Mn^{2+} + 4H_2O$		1

Question	Acceptable Answers	Reject	Mark
Number			2
1(b)(IV)	METHOD 1 2.5 x 10^{-3} mol of vanadium ions lose 5 x $1.5 \times 10^{-3} = 7.5 \times 10^{-3}$ mol electrons (1)		3
	Therefore 1 mol of vanadium ions lose 3 mol of electrons (1)		
	As final oxidation state is $+5$ the oxidation state of vanadium in the purple solution is +2 (1)		
	METHOD 2 Ratio of Mn:V = 0.0015:0.0025 = 3:5 (1) Oxidation number of Mn changes by 5 so oxidation number of vanadium must change by 3 (1) As final oxidation state is +5 the oxidation state of vanadium in the purple solution is +2 (1)		
	METHOD 3 First Mark +2 (with no working)		
	Second Mark Working backwards from this: Any mention of transfer of 3 electrons OR $V^{5+} + 3e^{(-)} \rightarrow V^{2+}$ OR $V^{2+} - 3e^{(-)} \rightarrow V^{5+}$		
	IGNORE Mn(VII) +3e ⁽⁻⁾ → Mn(II)		
	Third Mark 7.5 x 10^{-3} mols of electrons / change in oxidation number removed from 2.5 x 10^{-3} V ³⁺		
	OR 7.5 x 10^{-3} mols of manganate(VII) ion react with 2.5 x 10^{-3} mols V ³⁺		
	ALLOW TE from (b)(ii) and (iii)		

Question Number	Acceptable Answers	Reject	Mark
1 (c)	$VO_3^- + 2H^+ \longrightarrow VO_2^+ + H_2O$		1

Question Number	Acceptable Answers	Reject	Mark
1(d)	First Mark V ³⁺ / V(III) / (V)+3 (1)		2
	Second Mark Any of the following calculations : $V(IV)/VO^{2+}$ to $V(III)/V^{3+} = +0.48$ (V)		
	OR		
	$V(III)/V^{3+}$ to $V(II)/V^{2+}$ =-0.12 (V)		
	OR		
	ALLOW V(V)/VO ₂ ⁺ to V(IV)/VO ²⁺ =+0.66 (V)		
	OR		
	$Sn^{2+}(aq) Sn(s)$ has a more negative electrode potential than the last two vanadium potentials (so vanadium reduced to V ³⁺)		
	Accept reverse argument		
	OR		
	By the anticlockwise rule if shown with appropriate arrows (1)		

Total for Question 1 = 15 marks

Question Number	Acceptable Answers	Reject	Mark
2 (a)	Green	Blue	1
	OR	Blue-green	
	Green (Cr ³⁺)	Grey-green	
	IGNORE additional information unless another wrong colour.	Blue-violet	
	ALLOW		
	Shades of green like:		
	pale green		
	light green		
	dark green		
	ALLOW		
	Violet / purple / red-violet / red-purple / mauve / ruby-violet / green-violet		

Question Number	Acceptable Answers	Reject	Mark
2 (b)	Green / grey-green / grey-blue precipitate / ppt / ppte (of Cr(OH) ₃ / [Cr(H ₂ O) ₃ (OH) ₃])	Other wrong descriptions like effervescence	2
	ALLOW recognisable spelling of state eg percipitate (1)	Incorrect formula for example Cr(H ₂ O) ₂ (OH) ₄] ⁻	
	Second mark depends on first mark (or near miss such as incorrect formula of precipitate / incorrect colour of ppt)		
	Dissolves (to give green solution) OR	Dissolves to give a yellow / blue solution	
	Green solution forms (of $[Cr(OH)_6]^{3-}$) (1)	Incorrect formula for example CrO_4^{2-}	
	IGNORE shades of colour: Light / dark etc		

Question Number	Acceptable Answers		Reject	Mark
2 (c)	CrO ₄ ²⁻		CrO ₄	2
	OR		$Cr_2O_7^{2-}$	
	CrO_4^{-2}	(1)		
	Check the charge is correct IGNORE brackets eg $[CrO_4]^{2-}$			
	Ovidation / rodoy (reaction)		Reduction	
			Reduction / redox	
			Redox / reduction	
	Innoral references to Cr^{3+} Cr^{6+}		References to Cr ²⁺	
	loss/gain and loss of electrons, deprotonation	' (1)	'Gain of electrons' alone	
	Mark each part independent	ly.		

Total for Question 2 = 5 marks

Question Number	Correct Answer	Reject	Mark
3(a)	Any two from: $Fe^{2+} / Fe(H_2O)_6^{2+}$ $Ni^{2+} / Ni(H_2O)_6^{2+}$ $Cr^{3+} / Cr(H_2O)_6^{3+}$ Allow Cu^{2+}	Cr^{2+} Cu(H ₂ O) ₆ ²⁺	
		$Cu(H_2O)_4^{2+}$	
	Ignore names		
	As usual: 1 correct and 1 incorrect scores 1 2 correct and 1 incorrect scores 1 3 correct and 1 incorrect scores 2		2

Question Number	Correct Answer	Reject	Mark
3 (b)(i)	Fe^{2+} / $Fe(H_2O)_6^{2+}$		
	Ignore names		1

Question	Acceptable Answers	Reject	Mark
Number			
3(b)(ii)	Fe(OH) ₂ / Fe(H ₂ O) ₄ (OH) ₂ / Fe(OH) ₂ (H ₂ O) ₄		
	Ignore names		
	TE if Ni ²⁺ in (b)(i) then Ni(OH) ₂ / Ni(H ₂ O) ₄ (OH) ₂ / Ni(OH) ₂ (H ₂ O) ₄ score 1.		
	No TE for Cr ³⁺		1

Question Number	Acceptable Answers	Reject	Mark
3(b)(iii)	Fe(OH) ₃ / Fe(H ₂ O) ₃ (OH) ₃ / Fe(OH) ₃ (H ₂ O) ₃		
	Ignore names		
	No TE from (b)(i)		
	ALLOW: Fe_2O_3 with or without water		1

Question Number	Acceptable Answers	Reject	Mark
3(b)(iv)	Oxidation / redox (reaction) Additional information may be given and can be ignored, e.g. 'green precipitate undergoes oxidation'. ALLOW: Oxidation and reduction	Just 'reduction'	1

Question Number	Acceptable Answers	Reject	Mark
3 (c)	Purple to colourless/pale yellow/brown	Colourless to purple	
	Both required		
	OR		
	Purple (solution) decolourised		
	Allow		
	Pink for purple		
	OR		
	Green to yellow/brown	Green to purple	1

Question Number	Acceptable Answers	Reject	Mark
3(d)(i)	Cl ⁻ (ion) Ignore names: e.g. Chlor ide (ion)	Cl FeCl ₂ Chlor ine ion	1
	Iron(II) chloride		1

Question Number	Acceptable Answers	Reject	Mark
3(d)(ii)	Ammonia reacts with the iron ions to form a precipitate		
	OR		
	A precipitate forms (1)		
	Second mark		
	(A precipitate of) Iron(II) hydroxide/ Iron(III) hydroxide/ Fe(OH) ₂ / Fe(H ₂ O) ₄ (OH) ₂ / Fe(OH) ₃ / Fe(H ₂ O) ₃ (OH) ₃ (forms)		
	OR		
	Obscures the dissolving of the white precipitate (OWTTE e.g. masks precipitate) (1)		
	ALLOW Precipitate should dissolve but here ammonia is neutralised by nitric acid (1 max)		2

(Total for Question **3** = 10 marks)

Question Number	Acceptable Answers	Reject	Mark
4 (a)	CuCl ₄ ²⁻ /[CuCl ₄] ²⁻ /(CuCl ₄) ²⁻ /[Cu(Cl) ₄] ²⁻	CuCl₄ Correct formula	
		with added H ₂ 0	1

Question Number	Acceptable Answers	Reject	Mark
4(b)	 (pale) blue precipitate (1) Ignore gelatinous in front of precipitate but not in front of solution in next part. precipitate dissolves (in excess ammonia)/ precipitate disappears/soluble/solution forms (1) 		
	deep/dark(er)/royal blue(solution) (1) deep blue solution forms scores 2 nd and 3 rd marks Marks stand alone	Just "blue"	
	Ignore formulae even if incorrect		3

Question	Acceptable Answers	Reject	Mark
Number			
4(c)(i)	$(2S_2O_3^{2-} + I_2 \rightarrow) S_4O_6^{2-} + 2I^{-}$		
	Ignore state symbols even if incorrect		1

Question Number	Acceptable Answers	Reject	Mark
4(c)(ii)	mol $S_2 O_3^{2-} = 17.85 \times 0.120/1000$ (1)		
	= 2.142 x 10 ⁻³ /0.002142		
	mol Cu^{2+} = 2.142 x 10 ⁻³ in 25 cm ³		
	total mol Cu ²⁺ = $2.142 \times 10^{-3} \times 250/25$ (1)	1 sf	
	$= 2.142 \times 10^{-2} / 0.02142$		
	$[CuSO_4] = 2.142 \times 10^{-2} \times 1000/20.0$		
	$= 1.07(1) \text{ (mol dm}^{-3})$ (1)	1.0/1	
	Ignore sf except 1 sf Correct answer with no working (3) 0.107 (mol dm ⁻³) 2 max Check unfinished calculation not finished on next page 2 nd and 3 rd marks can be transferred errors		
			3

(Total for Question 4 = 8 marks)