Inheritance

Mark Scheme 3

Level	IGCSE
Subject	Biology
Exam Board	CIE
Topic	Inheritance
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 3

Score: /55
Percentage: /100

www.igexams.com

Question		E Answers	Marks	Additional Guidance
1	(a)	self-pollination, occurs within same flower / between flowers of same plant ; cross-pollination, occurs between flowers on different plants ;	2	
(b) wastage of pollen ; wastage of energy ; explanation ; depends on presence of pollinator ; need a pollinating / other, plant (nearby) ; long time for next generation to develop ; seeds scattered to places where they cannot grow ; variation leads to plants that are not adapted to place where parents grow / seeds end up ;			max 4	A idea of pollen does not reach a stigma
	(c)	round RR wrinkled rr ;	1	

www.igexams.com

www.igexams.com

Question	E \quad Answers	Marks	Additional Guidance	
2	(a)	loss of water vapour ; from, leaves / stems / aerial parts / through stomata;	accept evaporation accept diffusion through stomata	
	(b)	water moves from high(er) water potential to low(er) water potential ; by osmosis; through partially permeable membrane ; ref to protein pores ;		[max 3]

www.igexams.com

www.igexams.com

www.igexams.com

3	(d)	some seeds not, viable / AW ; some remain dormant ; no water available ; no soil ; no minerals / no nutrients ; too cold / too hot; A extremes of temperature not enough light ; ref to competition with other plants; eaten by animals ;	[max 3]	
	[Total: 14]			

www.igexams.com

4	(a)	(i)	transport of oxygen	[1]	
		(ii)	amino acids	[1]	A polypeptides, haem
		(iii)	iron / Fe/ Fe ${ }^{2+}$	[1]	
	(b)	$\begin{gathered} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \end{gathered}$	fewer red blood cells less elastic / less flexible / sickle-shaped, red blood cells haemoglobin is abnormal shape haemoglobin / blood, less efficient at transporting oxygen less respiration less energy / fatigues / exhaustion / less active / feeling faint / breathlessness death of tissues linked to oxygen supply capillaries are blocked pain 'sickle cell crisis' slow / poor, growth susceptible to infections reduced life span AVP e.g. problems in pregnancy, kidney disease	[max 3]	$\mathbf{I g}$ ref to malaria
	(c)	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	malaria is common in Africa people who are, heterozygous / $\mathbf{H b}^{\mathbf{A}} \mathbf{H b}^{\mathbf{S}}$ have, sickle cell trait / mild sickle cell protected / AW, against malaria description of sickle cells are less prone to infection $\mathbf{H b}^{\mathbf{s}}$ continues to appear due to selective advantage / AW	[max 3]	Mpt 4 R immune A description of selection

www.igexams.com

4	(d)	$\mathbf{H b}^{\mathbf{A}}$ is dominant / $\mathbf{H b}^{\mathbf{s}}$ is recessive / (both) parents are, carriers / heterozygous$\begin{aligned} & H b^{A} H b^{S} \times H b^{A} H b^{S} \\ & H b^{A}, H b^{S}+H b^{A}, H b^{S} \\ & \left(H b^{A} H b^{A}, H b^{A} H b^{S}, H b^{A} H b^{S}\right) H b^{S} H b^{S} \end{aligned}$		[max 3]	Note: $\mathbf{I g}$ incorrect text if genetic diagram is correct ECF for Mpt 2 and 3 in diagram key. Mpt 3 linked to correct derivation in Mpt 2 do not allow genotypes for parents or children that are single alleles
	(e)	1 2 3	ref to (ionising) radiation causes / increased risk, mutation change to DNA / genes	[max 2]	A e.g. of radiation e.g. gamma rays
		[Total: 14]			

