Inheritance

Mark Scheme 4

Level	IGCSE
Subject	Biology
Exam Board	CIE
Topic	Inheritance
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 4

Time Allowed: 52 minutes

Score: /43
Percentage: /100

www.igexams.com

Question	E Answers		Marks	Additional Guidance
$\begin{array}{lll} 1 & (a \quad 1 \\ & & 2 \\ & & 3 \end{array}$	$\begin{aligned} & \mathrm{A}^{\mathrm{C}} \quad \mathrm{~A}^{\mathrm{Y}} ; \\ & \mathrm{A}^{\mathrm{C}} \mathrm{~A}^{Y} ; \\ & \text { orange-red ; } \end{aligned}$		[3]	$\mathbf{R}-A^{c} A^{c}$ etc $\quad \mathbf{A}-A^{c}, A^{c}$ MP2 relies on correct MP1, allow ECF MP3 stands alone (A orange)
(b)	cross	genotypes of offspring	[3]	Allow ECF from Question 4a
	2 offspring x offspring	$A^{C} A^{C}, A^{Y} A^{Y}, A^{C} A^{Y}$;		
	3 offspring x crimson-flowered plant	$A^{C} A^{C}, A^{C} A^{Y}$;		
	4 offspring x yellow-flowered plant	$A^{Y} A^{Y}, A^{C} A^{Y}$;		
(c) 1 2 3 4 5 6 7	phenotype of $A^{C} A^{Y}$ (offspring of cross 1) is different from either parent / homozygote genotype / AW ; the phenotype, was intermediate / mixture of two colours; both alleles are expressed ; co / incomplete dominance ; offspring of cross 2 gives three phenotypes not two ; offspring of crosses 3 and 4 both give two phenotypes ; if dominance then cross 3 or 4 would give one phenotype only ;		[max 3]	MP2 orange / red must be qualified MP3 R genes

www.igexams.com

Question	E Answers	Marks	Additional Guidance
$\begin{array}{lll} 1 & \text { (d) } \begin{array}{l} 1 \\ \\ \\ \\ \\ \\ \\ 3 \end{array} \end{array}$	transfer of pollen from, anthers / stamen , to stigma ; self = within same flower (or flower on same plant); cross = between flowers on different plants (of same species) ;	[2]	\mathbf{R} fertilisation MP2, 3 need ref to flowers at some point
(e) $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & \\ & \hline \end{aligned}$	limited / little, variation ; offspring become homozygous (over time) / AW ; variation is due to mutation ; low chance that mutations will be expressed / AW ; offspring will be well adapted to conditions, locally / near parent ; if environment does not change ; limited / no, opportunity for evolution, if environment changes / example of change / will not be able to adapt to change in the environment ; AVP ; e.g. some variation due to meiosis / reduced variation leads to intraspecific competition locally	[max 4]	\mathbf{R} no variation MP2 - A ref to inbreeding / limited gene pool MP7 A ref to disease in context (as a change) R parents resistant, therefore offspring resistant /AW
[Total: 15]			

www.igexams.com

Question			E	Answers	Marks	Additional Guidance
2	(a)		$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ \\ 5 \\ 6 \\ \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \end{array}$	fewer red blood cells ; less elastic / less flexible, red blood cells; less haemoglobin ; haemoglobin / blood, less efficient at transporting oxygen ; less respiration; less energy / fatigue / exhaustion / less active / feeling faint / breathlessness; capillaries are blocked; increased chance of thrombosis; pain ; death of tissues linked to oxygen supply ; 'sickle cell crisis' ; slow / poor, growth ; reduced life span ; AVP ; e.g. susceptible to infections / kidney damage	$\max 5$	R no oxygen \mathbf{R} no respiration
	(b)	(i) (ii)		$\begin{gathered} \mathrm{Hb}^{A} \mathrm{Hb}^{S} \times \mathrm{H}^{A} \mathrm{Hb}^{S} \\ \mathrm{Hb}^{A}, \mathrm{Hb}^{S}+\mathrm{H}^{\mathrm{A}}, \mathrm{Hb}^{\mathrm{S}} ; \\ \mathrm{b}^{\mathrm{A}} \mathrm{Hb}^{\mathrm{A}}, \mathrm{Hb}^{\mathrm{A}} \mathrm{Hb}^{\mathrm{S}}, \mathrm{Hb}^{A} \mathrm{Hb}^{\mathrm{S}}, \mathrm{Hb}^{\mathrm{S}} \mathrm{Hb}^{\mathrm{S}} ; \end{gathered}$ rmal, sickle cell trait, ance is 1 in $4 / 25 \% / 0.25 / 0,25$;	3+1	allow ecf following a mistake in the genetic diagram after the parental genotypes, but 'mistake' must be worked correctly do not allow genotypes for parents or children that are single alleles phenotypes must match genotypes, i.e. must be in the same sequence R 1:4 or 4:1

www.igexams.com

Question	E \quad Answers	Marks	Additional Guidance	
2	(c)	resistance to / less chance of getting malaria ;	1	R immunity to malaria / stops you from getting malaria
(d)	idea that both alleles $/ \mathrm{Hb}^{\mathrm{A}}$ and $\mathrm{Hb}^{\text {S }}$, are expressed ; both alleles make two different forms of haemoglobin ; if dominant / recessive, then only one form of haemoglobin in heterozygous people ;			
	three phenotypes (not two) / sickle cell trait is a different phenotype from normal and sickle cell anemia ;	max 2		

www.igexams.com

	stion	E Answers	Marks	Additional Guidance
3	(a)	T. castane 1 wet / AW ; 2 any evidence from the table e.g. hot: (A) 100% - (B) warm: (C) 86% - (D) $13 \% /$ cold: (E) 29\% - (F) 0\% ; 3 in wet conditions, decreasing survival with decreasing temperature ; 4 any suitable two points from the table (i.e. (A) 100% - (C) 86% - (E) 29\%) ; T. confus 5 dry / AW ; 6 any evidence from the table e.g. hot: (A) 0\% - (B) warm: (C) 14% - (D) $87 \% /$ cold: (E) 71\% - (F) 100\% ; 7 in wet conditions, increasing survival with decreasing temperature ; 8 any suitable two points from the table (i.e. (A) $0 \%-$ (C) $14 \%-$ (E) 71%) ;	[max 4]	Note: marking points are linked in pairs e.g. MP1 pairs with M Note: at least two data points within species are required as 'evidence’ ignore ref. to temperature for MP1 and MP2 ignore ref to temperature for MP5 and MP6

www.igexams.com

Question				E Answers	Marks	Additional Guidance
3	(b)			competition ; example of competition (food / space); one species better adapted / AW ;	[2]	R 'survive better' unqualified A survival of the fittest in context of adaptation
	(c)	2		red-brown Aa x black, aa ; A, $a+a / a, a ;$ Aa, aa red-brown, black; 1:1 / AW ;	[4]	Note: marking points 1, 2, 3 are free-standing. MP 4 is linked to MP 3. allow ECF from MP1 to MP2 allow ECF from MP2 to MP3 allow ECF from MP3 to MP4
	(d)			mutation ; mutation, rare event ; (white) allele is recessive / ora ; only expressed in homozygote recessive ; selection; disadvantage / AW ;	[max 2]	\mathbf{R} gene A correct ref to parents - both must be heterozygous / homozygous / one of each A reason for being so
	(e)			decomposition ; bacteria / fungi, release enzymes / digest ; breakdown protein (in faeces) \rightarrow amino acids ; deamination; amino acids \rightarrow ammonia ; breakdown urea \rightarrow ammonia (+ carbon dioxide) ; (undigested) carbohydrate (in faeces) respired ;	[max 4]	A bacteria / fungi are decomposers A feed saprophytically
					tal: 16]	

