Inheritance

Question Paper 5

Level	IGCSE
Subject	Biology
Exam Board	CIE
Topic	Inheritance
Paper Type	(Extended) Theory Paper
Booklet	Question Paper 5

Time Allowed: 61 minutes

Score: /51

Percentage: /100

Fig. 2.1 shows the root systems of two species of desert plant, **A** and **B**.

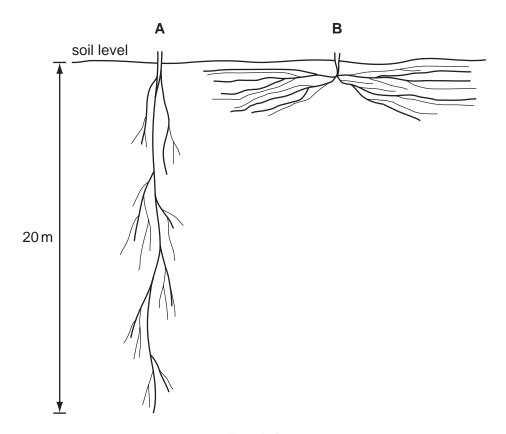


Fig. 2.1

(a)	Describe the two root systems shown in Fig. 2.1 and explain how each is an adaptation for survival in a desert ecosystem.
	[4]
(b)	Describe and explain two ways in which the leaves of desert plants reduce water loss in transpiration.
	1.
	2.
	[4]
/ - \	Wiles and all and the same of the same in

(c) Xylem and phloem are transport tissues in plants. They transport substances from organs that are known as sources to organs known as sinks.

Complete the table to show:

- two substances being transported in each tissue
- an organ that is a source for substances being transported in each tissue
- an organ that is a sink for substances being transported in each tissue.

tissue	substances being transported	source of substances in the plant	sink for substances in the plant
xylem	2		
phloem	2		

[6] [Total: 14]

2	(a) Define	e the term self-pollination.			
	•••••				[2
	Snapdrago	on plants have flowers with	three colours: red,	pink and whit	е.
	Some stud	lents investigated the inher	itance of flower col	our in snapdra	agons.
	that were h	I they cross-pollinated plan nomozygous for white flow I of the resulting plants had	wers. They collect		
		2 they self-pollinated all there were red-flowered p			
	plants				
	Use th	ne symbol I^R for the allele fo	or red flowers and I \	" for the allele	for white flowers.
	cross 1	parental phenotypes	red flowers	×	white flowers
		parental genotypes		×	
		gametes			
		offspring genotypes			
		offspring phenotypes		pink flowers	

ross 2	parental phenoty	pes pink flowers	×	pink flowers	
	parental genotype	es	×		
	gametes				
offspring					
genotype					
ratio of of phenotyp					[4]
(c) Anotl	ner student cross- _l	pollinated pink-flow	ered plants wit	h white-flowered plants	•
Com	plete the genetic d	iagram to show the	results that th	e student would expect	
	phenotypes	pink flowers	×	white flowers	
	genotypes		×		
	gametes				
offspring					
genotype	s				

(d)	Explain the advantages of sexual reproduction to a species of flowering plant, such as the snapdragon.
	[4]
	[Total: 13]

3	(a	Define the term gene.				
						[41
						[1]
	the	e medical condition sickle cell ar Americas. People with sickle ce naemoglobin.				
	The	e gene for haemoglobin exists in	two forms:			
	H ^N H ^S	= allele for normal haemoglobin = allele for abnormal haemoglob	oin			
	(b)	Complete the genetic diagram for this gene may have a child w				/gous
		Use the symbols H ^N and H ^S in	your answe	er.		
		parental phenotypes	normal	X	normal	
		parental genotypes		X		
		gametes		+		
		child's genotype				
		child's phenotype	sickle cell a	anaem	ia	
	(c)	Describe the effects of sickle ce	ell anaemia o	n the b	ody.	[3]
	` ,				•	
				•••••		••
				•••••		••
						••
						•1
						•1
						••

(d) Fig. 5.1 is a map that shows the distribution of the allele for the abnormal form of haemoglobin (H^s) and malaria in Africa.

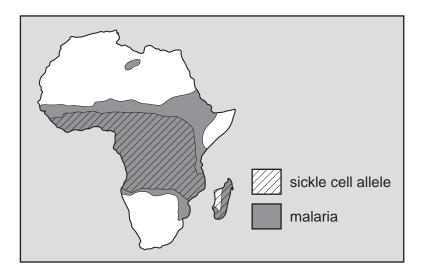


Fig. 5.1

Explain how natural selection is responsible for the distribution of the allele for the abnormal form of haemoglobin $(\mathbf{H}^{\mathbf{s}})$.	
	ſ:

(e)	Sickle cell anaemia is an example of the variation that exists in the human population. It is a form of discontinuous variation.
	Explain why sickle cell anaemia is a form of discontinuous variation.
	[3]
	[Total: 16]

- **4** Transpiration and translocation are processes responsible for transporting materials around a plant.
 - (i) Complete the table by stating the materials moved by these processes, their sources and their sinks.

process	materials moved	source of materials in the plant	sink for materials in the plant
transpiration	2		
translocation	2		

(ii) State **two** reasons why the source and sink for translocation in a plant may change at different stages in the growth of a plant.

[Total: 8]