Biotechnology and Genetic Engineering

Mark Scheme 2

Level	IGCSE
Subject	Biology
Exam Board	CIE
Topic	Biotechnology and Genetic Engineering
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 2

Time Allowed: 53 minutes

Score: /44

Percentage: /100

	gene; haploid; mitosis; [4]	
(b)	if there is an error in the genetic diagram allow ecf even if final phenotypes are NOT all different as stated in the question $ A \circ \times B \circ;$ $ A \circ + B \circ;$ $ A \circ + B \circ , A \circ , A $	accept IA, IB and IO for alleles A, B and O for alleles MP2 and 3 in Punnett square ignore spaces, commas or dots in diploid genotypes very little space between gamete genotypes reject IAB etc as genotypes for parents or children I without A, B and o
(c)	 two (or more) alleles; R two blood groups two / both, are expressed / equally dominant / both dominant / give different phenotype; in heterozygous / described (individual); AB, I^AI^B (as example); [3 max] 	A two (or more) implied, e.g. 'neither' / 'each other' / 'both' ignore ref to genes 'neither is fully expressed' = 1 mark for MP1 'neither is dominant over the other' = 2 marks R ref. to recessive and dominant A idea 'when both alleles are present in the genotype' A refs. roan cattle, pink flowers as other correct examples

1 (d)	accept converse statements		
	1 used to treat diabetes (wherever in answer);		
	2 insulin the same as human / uses human DNA / human gene / AW;	MP2: e.g. animal insulin is 'foreign' / bovine insulin has three different amino acid residues from human insulin / porcine has only one different / insulin from dead animal, is not the same as human	
	3 not rejected; A 'people not allergic'		
	4 no risk of, infection / disease (from animals);		
	5 GE insulin can be, modified / improved / AW;	amino acid sequence can be modified	
	6 animals not killed / suitable for vegans;	A religious / ethical objections to using animals, but not to	
	7 cheaper / more readily available / produced quickly / constantly / large amounts / large scale; R 'easier'	using GE insulin MP7 is related to production A animal insulin has to be obtained from animal soon after its death	
	8 ref. to bacteria reproduce quickly;		
	9 increasing numbers of people with diabetes / don't produce insulin; A don't respond to insulin [3 max]	R refs. to side effects	
(e) (i)	note that this is 2 marks	D alcomia / places	
	plasmid; DNA / genes; [2]	R plasmic / plasma R nucleic acid unqualified by DNA	
(ii)	(restriction) enzyme / endonuclease; ignore restrictive, etc	R incorrect enzyme, e.g. ligase	
	human / insulin, gene / DNA; [1]	R gene unqualified	
	[Total: 17]		

2	(a	ma bre	to mate them together, failure = suggests different species; ate together, no offspring = suggests different species; eed together and see if any offspring are, sterile / infertile; st DNA / examine chromosomes;	[max 1]
			•	
	(b)	(i)	continuous; A discrete	[1]
		(ii)	Equus grevyi ; A grevyi	[1]
	(c)	(i)	phenotype; A close phonetic spellings	[1]
		(ii)	in DNA' gets 2 marks change / AW; e.g. substitution / deletion / error in meiosis	nange
			<pre>in, DNA / gene(s) / chromosome(s); change in genotype / 'genetic, structure / genetic make-up' = 1 mark</pre>	[2]
	(d)	(i)	exoskeleton / external skeleton; segmented / jointed, limbs / legs / appendages; segmented body;	[max 1]
		(ii)	three parts to the body / head + thorax + abdomen; A sections / R segments wings; ignore numbers of wings if given 6 / 3 pairs of, legs;	[max 2]
	(e)	(i)	stripes (on head and neck), become / are, horizontal (when feeding); less attractive to (tsetse), flies / insects; A AW A camouflage in grass;	[2]
		(ii)	<pre>1 ref to mutation and number of stripes; 2 ref to number of stripes and likelihood of being bitten; 3 ref to, disease / death; 4 survivors breed; 5 ref to offspring; (fewer stripes = less / more stripes = more) 6 passing on advantageous, alleles / genes (for more stripes); 7 natural selection / survival of fittest;</pre>	
			R artificial selection	[max 3]

[Total: 14]

```
(a (i) chloroplasts; R chlorophyll
3
             cellulose cell wall; A 'not made of, murein / peptidoglycan'
             (sap / large / permanent) vacuole(s); A tonoplast
             nucleus / nuclear membrane / nuclear envelope; R DNA / RNA
             nucleolus;
             mitochondria;
             endoplasmic reticulum / Golgi;
             amyloplasts; A starch, grains / granules
             more than one chromosome / linear chromosome(s);
                                                                                             [4]
        (ii) membrane;
             cytoplasm;
             ribosomes;
             chromosomes; A 'strands of DNA' R DNA unqualified
             glycogen granules;
             oil droplets;
                                                                                         [max 2]
     (b) cheese;
                                               tofu;
         yoghurt;
                                               soya sauce;
         sour milk;
                                               sauerkraut;
         bread;
                                               vinegar;
         alcohol / any named alcoholic drink;
                                               tapai ;
         Quorn / mycoprotein;
                                               tempe / tempeh;
         single cell protein;
                                               kimchee;
                                                                                         [max 2]
```

(c)	reje	ect bacteria becoming immune and antibiotics causing mutation	
	1 2 3 4 5	mutation / mutant; stronger wall / less permeable wall / enzyme to breakdown antibiotic / AW; antibiotic kills bacteria except those that are, mutant / resistant; antibiotic is, selective agent / AW; A ref to (natural) selection (resistant) bacteria reproduce; ignore mitosis	[max 3]
(d)	this	s may be answered with reference to insulin	
	1 2 3 4 5 6 7 8	fast reproduction rate / AW; identical offspring / cloning; small number of genes; single cells; copy / use, genes from, other organisms / viruses; makes, protein / named protein, from another organism; have plasmids; used to transfer gene(s) into bacteria / easy to put gene(s) in bacteria; A DNA for gene R product / protein, taken from, human / other organism	[max 2]
			[Total: 13]