Biotechnology and Genetic Engineering
 Mark Scheme 2

Level	IGCSE
Subject	Biology
Exam Board	CIE
Topic	Biotechnology and Genetic Engineering
Paper Type	(Extended) Theory Paper
Booklet	Mark Scheme 2

Time Allowed:	53 minutes
Score:	$/ 44$
Percentage:	$/ 100$

www.igexams.com

1 (a)	phenotype ; gene; haploid ; mitosis ;	
(b)	if there is an error in the genetic diagram allow ecf even if final phenotypes are NOT all different as stated in the question $\begin{aligned} & I^{A} I^{\circ} \times I^{B} I^{\circ} ; \\ & 1^{A}, I^{\circ}+I^{B}, I^{\circ} ; \\ & I^{A} I^{\circ}, I^{A} I^{B}, I^{B} I^{\circ}, 1^{\circ} I^{\circ} ; \end{aligned}$ A AB B \quad; blood types must match genotypes	accept IA, IB and IO for alleles A, B and O for alleles MP2 and 3 in Punnett square ignore spaces, commas or dots in diploid genotypes very little space between gamete genotypes reject ${ }^{\mathrm{AB}}$ etc as genotypes for parents or children I without A, B and o
(c)	1 two (or more) alleles; R two blood groups 2 two / both, are expressed / equally dominant / both dominant / give different phenotype ; 3 in heterozygous / described (individual); $4 \mathrm{AB}, \mathrm{I}^{\mathrm{A}} \mathrm{I}^{\mathrm{B}}$ (as example); [3 max]	A two (or more) implied, e.g. 'neither' / 'each other' / 'both' ignore ref to genes 'neither is fully expressed' = 1 mark for MP1 'neither is dominant over the other' = 2 marks \mathbf{R} ref. to recessive and dominant A idea 'when both alleles are present in the genotype' A refs. roan cattle, pink flowers as other correct examples

www.igexams.com

1 (d)	accept converse statements 1 used to treat diabetes (wherever in answer); 2 insulin the same as human / uses human DNA / human gene / AW ; 3 not rejected ; A 'people not allergic' 4 no risk of, infection / disease (from animals) ; 5 GE insulin can be, modified / improved / AW ; 6 animals not killed / suitable for vegans ; 7 cheaper / more readily available / produced quickly / constantly / large amounts / large scale ; R 'easier’ 8 ref. to bacteria reproduce quickly ; 9 increasing numbers of people with diabetes / don't produce insulin ; A don't respond to insulin	MP2: e.g. animal insulin is 'foreign' / bovine insulin has three different amino acid residues from human insulin / porcine has only one different / insulin from dead animal, is not the same as human amino acid sequence can be modified A religious / ethical objections to using animals, but not to using GE insulin MP7 is related to production A animal insulin has to be obtained from animal soon after its death \mathbf{R} refs. to side effects
(e) (i)	note that this is 2 marks plasmid; DNA / genes ;	R plasmic / plasma \mathbf{R} nucleic acid unqualified by DNA
(i)	(restriction) enzyme / endonuclease ; ignore restrictive, etc human / insulin, gene / DNA ;	\mathbf{R} incorrect enzyme, e.g. ligase \mathbf{R} gene unqualified
	[Total: 17]	

www.igexams.com

(a try to mate them together, failure = suggests different species;
mate together, no offspring = suggests different species ;
breed together and see if any offspring are, sterile / infertile ;
test DNA / examine chromosomes ;
(b) (i) continuous; A discrete
(ii) Equus grevyi; A grevyi
(c) (i) phenotype; A close phonetic spellings
(ii) these two points are linked - 'change' unqualified does not get a mark, but 'change in DNA' gets 2 marks
change / AW ; e.g. substitution / deletion / error in meiosis
in, DNA / gene(s) / chromosome(s)
change in genotype / 'genetic, structure / genetic make-up' = 1 mark
(d) (i) exoskeleton / external skeleton;
segmented / jointed, limbs / legs / appendages ;
segmented body ;
(ii) three parts to the body / head + thorax + abdomen; A sections / R segments
wings; ignore numbers of wings if given
6 / 3 pairs of, legs ;
(e) (i) stripes (on head and neck), become / are, horizontal (when feeding);
less attractive to (tsetse), flies / insects; A AW
A camouflage in grass ;
(ii) 1 ref to mutation and number of stripes;

2 ref to number of stripes and likelihood of being bitten ;
3 ref to, disease / death ;
4 survivors breed;
5 ref to offspring; (fewer stripes = less / more stripes = more)
6 passing on advantageous, alleles / genes (for more stripes);
7 natural selection / survival of fittest ;

www.igexams.com

3
(a (i) chloroplasts; R chlorophyll cellulose cell wall ; A 'not made of, murein / peptidoglycan' (sap / large / permanent) vacuole(s); A tonoplast nucleus / nuclear membrane / nuclear envelope ; R DNA / RNA nucleolus;
mitochondria
endoplasmic reticulum / Golgi ;
amyloplasts ; A starch, grains / granules
more than one chromosome / linear chromosome(s);
(ii) membrane ;
cytoplasm ;
ribosomes;
chromosomes; A 'strands of DNA' R DNA unqualified glycogen granules ;
oil droplets ;
(b) cheese;
yoghurt;
sour milk ;
bread ;
alcohol / any named alcoholic drink ;
Quorn / mycoprotein ;
single cell protein ;
tofu ;
soya sauce ;
sauerkraut ;
vinegar ;
tapai ;
tempe / tempeh ;
kimchee ;

www.igexams.com

(c) reject bacteria becoming immune and antibiotics causing mutation

1 mutation / mutant ;
2 stronger wall / less permeable wall / enzyme to breakdown antibiotic / AW ;
3 antibiotic kills bacteria except those that are , mutant / resistant ;
4 antibiotic is, selective agent / AW ; A ref to (natural) selection
5 (resistant) bacteria reproduce ; ignore mitosis
(d) this may be answered with reference to insulin

1 fast reproduction rate / AW ;
2 identical offspring / cloning;
3 small number of genes ;
4 single cells ;
5 copy / use, genes from, other organisms / viruses ;
6 makes, protein / named protein, from another organism ;
7 have plasmids ;
8 used to transfer gene(s) into bacteria / easy to put gene(s) in bacteria ;
A DNA for gene
\mathbf{R} product / protein, taken from, human / other organism
[max 2]
[Total: 13]

