Redox

Mark Scheme 1

Level	IGCSE
Subject	Chemistry
ExamBoard	CIE
Topic	Chemical Reactions
Sub-Topic Sub-Topic	Redox
Paper	(Extended) Theory
Booklet	Mark Scheme 1

TimeAllowed: 63 minutes

Score: / 52

Percentage: /100

Question	Answer	Marks
1(a)(i)	step 2 and it is electron gain/oxidation state decreases;	1
(a)(ii)	silver (ion) and it accepts electrons/gets reduced/oxidation state decreases;	1
(b)	prediction: the 'not covered' section will be black; the 'covered in thick card' section will be white/cream; the 'covered in thin card' section will be grey; explanation: the more light, the more silver ions are reduced;	1 1 1
(c)(i)	carbon dioxide + water → glucose + oxygen reactants correct; products correct;	1 1
(c)(ii)	chlorophyll	1
(c)(iii)	one correct –O– link between rectangles;	1
	two correct glucose units with continuation bonds;	1
(c)(iv)	the reaction of glucose with oxygen to release (carbon dioxide and water and) energy; or the reaction of glucose in a biological system to release energy;	1

2	(a	chlorine/argon	[1]
	(b)	chlorine	[1]
	(c)	magnesium	[1]
	(d)	argon	[1]
	(e)	aluminium	[1]
	(f)	sodium	[1]
			[Total:6]

3	(a	An •	bubbles/effervescence/fizzing (some of the) solid/copper carbonate dissolves/disappears or some (brown) solid seen (undissolved) (colourless) solution or liquid turns blue	[2]
	(b)	filte	r/centrifuge/decant	
		was	sh with (distilled) water	[1]
		(dry	with) filter paper/tissues/warm windowsill/in sun/oven/fan/heat	[1]
	(c)	(i)	Blue precipitate/ppt	
		(ii)	$Cu^{2+} + 2OH^{-} \rightarrow Cu(OH)_{2}$	[1]
	(d)	(i)	$Cu(OH)_2(s) \rightarrow CuO(s) + H_2O(g)$	
			Equation	[1]
			State symbols of correct chemical equation	[1]
		(ii)	carbon/hydrogen	[1]
			[Total	:10]

4	(a	(i)	$Cu(OH)_2 \rightarrow CuO + H_2O$	[1
		(ii)	Rb	[1]
	(b)	(i)	electron loss	[1]
		(ii)	because they can accept electrons	[1]
	(c)	(i)	copper and mercury	[1]
		(ii)	add copper / mercury / metal to (named) acid and no reaction / no bubbles / hydrogen	no [1]
	(d)	(i)	Mn	[1]
		(ii)	(solution) becomes colourless / decolourises NOT: clear	[1]
			[Total	: 8]

5 (a) (i) nu	mber of outer electrons increases	[1]
	or number of electrons more than complete energy le or number of electrons to be lost or accept clear examples NOT just different groups or valencies	
(ii)) gain electrons number of electrons to be gained is less across period	[1] [1]
	or number of outer electrons incr	
` ,	Al ₂ S ₃	[1]
•	Si ₃ P ₄	[1]
(c) (i) s	silicon	[1]
(ii)	sodium	[1]
(iii) s	sulphur or chlorine	[1]
(d) 1	unreactive or inert or does not react	[1]

(e)		3Na to 1P COND next two marks	[1]
		correct charges	[1]
		8e around P	[1]
		If covalent then only one mark for 3Na to 1P	
(f)	(i)	11.5/23 = 0.5	[1]
	(ii)	0.25	(17
	(11)	conseq to (i)	[1]
		- ','	
	(iii)	$0.25 \times 32 = 8 g$	[1]
		conseq	
	(iv)	2.0 g	[1]
		only conseq to (iii) if answer to (iii) is less than 10	
		NB If (ii) is 0.3(125), no excess is possible, (iv) ZERO	
TOTAL = 16			